2016, Number 1
<< Back Next >>
Investigación en Discapacidad 2016; 5 (1)
Advances in the development of cell therapy for muscular dystrophies
Mondragón-González R, Cisneros VB
Language: Spanish
References: 53
Page: 46-53
PDF size: 211.70 Kb.
ABSTRACT
Muscular dystrophies are genetic diseases characterized by progressive muscular wasting. So far, no therapy is available to cure or ameliorate the course of these pathologies; however, different experimental strategies are currently in development to tackle them. One promising approach involves the transfer of healthy cells to the patient, in order to regenerate muscle tissue. In recent years, different populations of tissue-specific stem cells have been used in cell therapy to fight muscular dystrophies. Recently, the use of embryonic stem cells and induced stem cells has provided promising results in dystrophic murine models. In this review, we recapitulated a series of studies and experimental strategies designed toward the development of an efficient cell therapy against muscular dystrophies.
REFERENCES
Flanigan KM. The muscular dystrophies. Semin Neurol. 2012; 32: 255-263. doi: 10.1055/s-0032-1329199.
Theadom A et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014; 43: 259-268. doi: 10.1159/000369343.
Emery AE. Population frequencies of inherited neuromuscular diseases –a world survey. Neuromuscul Disord. 1991; 1: 19-29.
Kumar A, Khandelwal N, Malya R, Reid MB, Boriek AM. Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J. 2004; 18: 102-113. doi: 10.1096/fj.03-0453com.
Harper PS, van Engelen BG, Eymard B, Rogers M, Wilcox D. 99th ENMC international workshop: myotonic dystrophy: present management, future therapy. 9-11 November 2001, Naarden, The Netherlands. Neuromuscul Disord. 2002; 12: 596-599.
Mahadevan M et al. Myotonic dystrophy mutation: an unstable CTG repeat in the 3’ untranslated region of the gene. Science. 1992; 255: 1253-1255.
Schara U, Schoser BG. Myotonic dystrophies type 1 and 2: a summary on current aspects. Semin Pediatr Neurol. 2006; 13: 71-79. doi: 10.1016/j.spen.2006.06.002.
Shieh PB. Muscular dystrophies and other genetic myopathies. Neurol Clin. 2013; 31: 1009-1029. doi: 10.1016/j.ncl.2013.04.004.
Weissman IL. Stem cells: units of development, units of regeneration, and units in evolution. Cell. 2000; 100: 157-168.
Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961; 9: 493-495.
Carlson BM. The regeneration of skeletal muscle. A review. Am J Anat. 1973; 137: 119-149. doi: 10.1002/aja.1001370202.
Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM. Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature. 1989; 337: 176-179. doi: 10.1038/337176a0.
Huard J, Verreault S, Roy R, Tremblay M, Tremblay JP. High efficiency of muscle regeneration after human myoblast clone transplantation in SCID mice. J Clin Invest. 1994; 93: 586-599. doi: 10.1172/JCI117011.
Kinoshita I et al. Very efficient myoblast allotransplantation in mice under FK506 immunosuppression. Muscle Nerve. 1994; 17: 1407-1415. doi: 10.1002/mus.880171210.
Gussoni E, Blau HM, Kunkel LM. The fate of individual myoblasts after transplantation into muscles of DMD patients. Nature Medicine. 1997; 3: 970-977.
Mendell JR et al. Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med. 1995; 333: 832-838. doi: 10.1056/NEJM199509283331303.
Miller RG et al. Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve. 1997; 20: 469-478.
Minasi MG et al. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development. 2002; 129: 2773-2783.
Sampaolesi M et al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature. 2006; 444: 574-579. doi: 10.1038/nature05282.
Sampaolesi M et al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts. Science. 2003; 301: 487-492. doi: 10.1126/science.1082254.
Dellavalle A et al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun. 2001; 2: 499. doi: 10.1038/ncomms1508.
Qu-Petersen Z et al. Identification of a novel population of muscle stem cells in mice: potential for muscle regeneration. J Cell Biol. 2002; 157: 851-864. doi: 10.1083/jcb.200108150.
Sarig R, Baruchi Z, Fuchs O, Nudel U, Yaffe D. Regeneration and transdifferentiation potential of muscle-derived stem cells propagated as myospheres. Stem Cells. 2006; 24: 1769-1778. doi: 10.1634/stemcells.2005-0547.
Torrente Y et al. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model. J Cell Biol. 2003; 162: 511-520. doi: 10.1083/jcb.200210006.
Torrente Y et al. Intraarterial injection of muscle-derived CD34(+)Sca-1(+) stem cells restores dystrophin in mdx mice. J Cell Biol. 2001; 152: 335-348.
Chirieleison SM, Feduska JM, Schugar RC, Askew Y, Deasy BM. Human muscle-derived cell populations isolated by differential adhesion rates: phenotype and contribution to skeletal muscle regeneration in Mdx/SCID mice. Tissue Eng Part A. 2012; 18: 232-241. doi: 10.1089/ten.TEA.2010.0553.
Torrente Y et al. Human circulating AC133(+) stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle. J Clin Invest. 2004; 114: 182-195. doi: 10.1172/JCI20325.
Torrente Y et al. Autologous transplantation of muscle-derived CD133+ stem cells in Duchenne muscle patients. Cell Transplant. 2007; 16: 563-577.
Meng J, Muntoni F, Morgan JE. Stem cells to treat muscular dystrophies –where are we? Neuromuscul Disord. 2011; 21: 4-12. doi: 10.1016/j.nmd.2010.10.004.
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292: 154-156.
Bodnar MS, Meneses JJ, Rodriguez RT, Firpo MT. Propagation and maintenance of undifferentiated human embryonic stem cells. Stem Cells Dev. 2004; 13: 243-253. doi: 10.1089/154732804323099172.
Sanchez A, Jones WK, Gulick J, Doetschman T, Robbins J. Myosin heavy chain gene expression in mouse embryoid bodies. An in vitro developmental study. J Biol Chem. 1991; 266: 22419-22426.
Bhagavati S, Xu W. Generation of skeletal muscle from transplanted embryonic stem cells in dystrophic mice. Biochem Biophys Res Commun. 2005; 333: 644-649. doi: 10.1016/j.bbrc.2005.05.135.
Barberi T et al. Derivation of engraftable skeletal myoblasts from human embryonic stem cells. Nat Med. 2007; 13: 642-648. doi: 10.1038/nm1533.
Darabi R et al. Functional skeletal muscle regeneration from differentiating embryonic stem cells. Nat Med. 2008; 14: 134-143. doi: 10.1038/nm1705.
Darabi R et al. Engraftment of embryonic stem cell-derived myogenic progenitors in a dominant model of muscular dystrophy. Experimental Neurology. 2009; 220: 212-216. doi: 10.1016/j.expneurol.2009.08.002.
Filareto A, Darabi R, Perlingeiro RC. Engraftment of ES-derived myogenic progenitors in a severe mouse model of muscular dystrophy. J Stem Cell Res Ther. 2012; 10. doi: 10.4172/2157-7633.S10-001.
Takahashi K, Okita K, Nakagawa M, Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat Protoc. 2007; 2: 3081-3089. doi: 10.1038/nprot.2007.418.
Takahashi K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007; 131: 861-872. doi: 10.1016/j.cell.2007.11.019.
Yuan TF, Arias-Carrion O. Locally induced neural stem cells/pluripotent stem cells for in vivo cell replacement therapy. Int Arch Med. 2008; 1: 17. doi: 10.1186/1755-7682-1-17.
Mali P et al. Improved efficiency and pace of generating induced pluripotent stem cells from human adult and fetal fibroblasts. Stem Cells. 2008; 26: 1998-2005. doi: 10.1634/stemcells.2008-0346.
Ebert AD et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature. 2009; 457: 277-280. doi: 10.1038/nature07677.
Park IH et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451: 141-146. doi: 10.1038/nature06534.
Maherali N et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell. 2007; 1: 55-70. doi: 10.1016/j.stem.2007.05.014.
Wernig M et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007; 448: 318-324. doi: 10.1038/nature05944.
Masaki H et al. Heterogeneity of pluripotent marker gene expression in colonies generated in human iPS cell induction culture. Stem Cell Res. 2007; 1: 105-115. doi: 10.1016/j.scr.2008.01.001.
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature. 2007; 448: 313-317. doi: 10.1038/nature05934.
Darabi R et al. Functional myogenic engraftment from mouse iPS cells. Stem Cell Reviews. 2011; 7: 948-957. doi: 10.1007/s12015-011-9258-2.
Darabi R et al. Human ES- and iPS-derived myogenic progenitors restore dystrophin and improve contractility upon transplantation in dystrophic mice. Cell Stem Cell. 2012; 10: 610-619. doi: 10.1016/j.stem.2012.02.015.
Awaya T et al. Selective development of myogenic mesenchymal cells from human embryonic and induced pluripotent stem cells. PLoS One. 2012; 7: e51638. doi: 10.1371/journal.pone.0051638.
Filareto A et al. An ex vivo gene therapy approach to treat muscular dystrophy using inducible pluripotent stem cells. Nat Commun. 2013; 4: 1549. doi: 10.1038/ncomms2550.
Tedesco FS et al. Transplantation of genetically corrected human iPSC-derived progenitors in mice with limb-girdle muscular dystrophy. Sci Transl Med. 2012; 4: 140ra189. doi: 10.1126/scitranslmed.3003541.
Li HL et al. Precise correction of the dystrophin gene in Duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem Cell Reports. 2015; 4: 143-154. doi: 10.1016/j.stemcr.2014.10.013.