2016, Número 1
<< Anterior Siguiente >>
Investigación en Discapacidad 2016; 5 (1)
El subcomplejo sarcoglicano-sarcospan: su importancia en el músculo estriado y tejido vascular
Coral-Vázquez RM, Ramírez BR, Palma-Flores C, Ramírez-Sánchez I, De los Santos S, Canto P
Idioma: Español
Referencias bibliográficas: 43
Paginas: 39-45
Archivo PDF: 340.70 Kb.
RESUMEN
Los sarcoglicanos forman parte de un grupo de proteínas transmembranales relacionadas estrechamente con un complejo mayor de proteínas asociadas con distrofina (por sus siglas en inglés, DAPC,
dystrophin-associated protein complex). Inicialmente se describieron cuatro sarcoglicanos (α-, β-, γ- y δ-SG) en el sarcolema de las fibras del músculo esquelético. El complejo SG, junto con otra proteína, sarcospan (SSPN), y el subcomplejo distroglicano (DG) son parte de un andamiaje que une a la matriz extracelular con el citoesqueleto. Estas proteínas en conjunto protegen a la célula del daño mecánico durante el proceso de contracción. Adicionalmente, existen evidencias de su participación en mecanismos de transducción de señales. Mutaciones en estas proteínas son la causa de distrofias musculares de cintura 2C-F (LGMD 2C-F,
limb-girdle muscular dystrophy). Existen otras isoformas de los SG, ε- y ζ-, que no se han asociado con distrofia muscular, aunque mutaciones en ε-SG pueden causar patologías como la distonía mioclónica. La deficiencia o ausencia de β-, γ- y δ-SG también se asocia con cardiopatía dilatada. En relación a esto, varios estudios han puesto de manifiesto la presencia de formas alternas del complejo SG en músculo liso y endotelio y la relevancia de estas proteínas en la fisiología vascular.
REFERENCIAS (EN ESTE ARTÍCULO)
Ervasti JM, Campbell KP. A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol. 1993; 122: 809-823.
Cohn RD, Campbell KP. Molecular basis of muscular dystrophies muscle. Nerve. 2000; 23: 1456-1471.
Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein. Nature. 1989; 338: 259-262.
Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991; 66: 1121-1131.
Campbell KP. Three muscular dystrophies: loss of cytosqueleton-extracelular matrix lincage. Cell. 1995; 80: 675-679.
Crosbie RH, Heighmay J, Venzke DP, Lee JC, Campbell KP. Sarcospan the 25kDa transmembrane component of the dystrophin-glycoprotein complex. J Biol Chem. 1997; 272: 31221-31224.
Ettinger AJ, Feng G, Sanes JR. Epsilon-sarcoglycan, a broadly expressed homologue of the gene mutate in limb-girdle muscular dystrophy 2D. J Biol Chem. 1997; 272: 32534-32538.
Wheeler MT, Zarnegar S, McNally EM. ζ-sarcoglycan, a novel component of the sarcoglycan complex, is reduced in muscular dystrophy. Hum Mol Gen. 2002; 18: 2147-2154.
Ramírez R. Análisis de la actividad del promotor a del gen de α-sarcoglicano de ratón durante el desarrollo de células de músculo cardiaco [Tesis de doctorado]. México: Instituto de Investigaciones Biomédicas-UNAM; 2015.
Hack AA, Groh M, McMally EM. Sarcoglycans in muscular dystrophy. Micros Res Tech. 2000; 48: 167-180.
Liu LA, Engvall E. Sarcoglycan isoforms in skeletal muscle. J Biol Chem. 1999; 272: 38171-38176.
Ozawa E, Noguchi S, Mizuno Y, Hagiwara Y, Yoshida M. From dystrophinopathy to sarcoglycanopathy: evolution of a concept of muscular dystrophy. Muscle Nerve. 1998; 21: 421-438.
Shi W, Chen Z, Schottenfeld J, Stahl RC, Kunkel LM, Chan YM. Specific assembly pathway of sarcoglycans is dependent on beta- and delta-sarcoglycan. Muscle Nerve. 2004; 29: 409-419.
McNally EM, Pytel P. Muscle diseases: the muscular dystrophies. Annu Rev Pathol. 2007; 2: 87-109.
Lapidos KA, Kakkar R, McNally EM. The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res. 2004; 94: 1023-1031.
Matsamura K, Saito F, Yamada H, Hase A, Sunada Y, Shimizu T. Sarcoglycan complex: a muscular supporter of dystroglycan-dystrophin interplay? Cell Mol Biol. 1999; 45: 751-762.
Thompson TG, Chan YM, Hack AA, Brosiu M, Rajala M, Lidov HG et al. Filamin-2 (FLN2): a muscle-specific sarcoglycan interacting protein. J Cell Biol. 2000; 148: 115-126.
Chardin P, Cussac D, Maignan S, Ducruix A. The Grb2 adaptor. FEBS Lett. 1995; 369: 47-51.
Yoshida M, Hama H, Ishikawa-Sakurai M, Imamura M, Mizuno Y, Araishi K et al. Biochemical evidence for association of dystrobrevin with the sarcoglycan-sarcospan complex as a basis for understanding sarcoglycanopathy. Hum Mol Genet. 2000; 9: 1033-1040.
Yoshida T, Pan Y, Hanada H, Iwata Y, Shigekawa M. Bidirectional signaling between sarcoglycans and the integrin adhesion system in cultured L6 myocytes. J Biol Chem. 1998; 273: 1583-1590.
Betto R, Senter L, Ceoldo S, Tarricone E, Biral D, Salviati G. Ecto-ATPase activity of alpha-sarcoglycan (adhalin). J Biol Chem. 1999; 274: 7907-7912.
Sandonà D, Gastaldello S, Martinello T, Betto R. Characterization of the ATP-hydrolysing activity of alpha-sarcoglycan. Biochem J. 2004; 381: 105-112.
Ozawa E, Yoshida M, Suzuki A, Mizuno Y, Hagiwara Y, Noguchi S. Dystrophyn associated proteins in muscular dystrophy. Hum Mol Genet. 1995; 4: 1711-1716.
Sakamoto A, Ono K, Abe M, Jasmin G, Eki T, Murakami Y et al. Both hypertrophic and dilated cardiomyopathies are caused by mutation of the same gene, delta-sarcoglycan in hamster: an animal model of disrupted dystrophin-associated glycoprotein complex. Proc Natl Acad Sci USA. 1997; 94: 13873-13878.
Nishiyama A, Endo T, Takeda S, Imamura M. Identification and characterization of epsilon-sarcoglycans in the central nervous system. Mol Brain Res. 2004; 125: 1-12.
Mizuno Y, Noguchi S, Yamamoto H, Yoshida M, Nonaka I, Hirai S et al. Sarcoglycan complex is selectively lost in dystrophic hamster muscle. Am J Pathol. 1995; 146: 530-536.
Coral-Vázquez R, Cohn RD, Moore SA, Hill JA, Weiss RM, Davisson RL et al. Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy. Cell. 1999; 98: 465-474.
Zhu X, Hadhazy M, Groh ME, Wheeler MT, Wollmann R, McNally EM. Overexpression of gamma-sarcoglycan induces severe muscular dystrophy. Implications for the regulation of sarcoglycan assembly. J Biol Chem. 2001; 276: 21785-21790.
Roque-Ramírez B. Diagnóstico de distrofias musculares a través de detección de proteínas: distrofias musculares de Duchenne/Becker y de cinturas [Tesis de licenciatura]. México: Facultad de Estudios Superiores Cuautitlán-UNAM; 2006.
Hack AA, Lam MY, Cordier L, Shoturma DI, Ly CT, Hadhazy MA et al. Differential requirement for individual sarcoglycans and dystrophin in the assembly and function of the dystrophin glycoprotein complex. J Cell Sci. 2000; 113: 2535-2544.
Ueda H, Ueda K, Baba T, Ohno S. Delta- and gamma-sarcoglycan localization in the sarcoplasmic reticulum of skeletal muscle. J Histochem Cytochem. 2001; 49: 529-538.
Estrada FJ, Mornet D, Rosas-Vargas H, Angulo A, Hernández M, Becker V et al. A novel isoform of murine Delta-sarcoglycan localized in sarcoplasmic reticulum. Biochem Biophys Res Commun. 2006; 340: 865-871.
Solares-Pérez A, Álvarez R, Crosbie H, Ortega A, Coral-Vázquez RM. Altered calcium pump and secondary deficiency of γ-sarcoglycan and microspan in sarcoplasmic reticulum membranes isolated from δ-sarcoglycan knockout mice. Cell Calcium. 2010; 48: 28-36.
Duclos F, Straub V, Moore SA, Venzke DP, Hrstka RF, Crosbie RH et al. Progressive muscular dystrophy in alfa-sarcoglycan deficient mice. J Cell Biol. 1998; 142: 1461-1471.
Durbeej M, Cohn RD, Hrstka F, Moore SA, Allamand V, Davidson BL et al. Disruption of beta-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E. Mol Cell Biol. 2000; 5: 141-151.
McNally EM, Passos-Bueno MR, Bonnemann CG, Vainzof M, de Sa Moreira E, Lidov HG et al. Mild and severe muscular dystrophy caused by a single gamma-sarcoglycan mutation. Am J Hum Genet. 1996; 59: 1040-1047.
Tsubata S, Bowles KR, Vatta M, Zintz C, Titus J, Muhonen L et al. Mutations in the human delta-sarcoglycan gene in familial and sporadic dilated cardiomyopathy. J Clin Invest. 2000; 106: 6556-6562.
River F, Robert A, Hugon G, Mornet D. Different utrophin and dystrophin properties related to their vascular smooth muscle distributions. FEBS Lett. 1997; 408: 94-98.
Ramírez-Sánchez I, Rosas-Vargas H, Ceballos G, Salamanca F, Coral-Vázquez RM. Expression analysis of the SG-SSPN complex in smooth muscle and endothelial cells of human umbilical cord vessels. J Vasc Res. 2005; 42: 1-7.
Palma-Flores C, Ramírez-Sánchez I, Rosas-Vargas H, Canto P, Coral-Vázquez RM. Description of a new utrophin-associated protein complex in caveolae domains of human artery smooth muscle cells. Biochim Biophys Acta Biomembranes. 2014; 1838: 1047-1054.
Palma-Flores C. Descripción de un complejo de proteínas asociado a utrofina en balsas lipídicas del músculo liso de arteria umbilical humana: modulación de eNOS/cGMP mediante el complejo UAP [Tesis de doctorado]. México: Instituto de Investigaciones Biomédicas-UNAM; 2014.
Ramírez-Sánchez I, Ceballos-Reyes G, Rosas-Vargas H, Cerecedo-Mercado D, Salamanca Fabio, Coral-Vázquez RM. Expression and function of utrophin-associated protein complex in stretched endothelial cells: dissociation and activation of eNOS. Front Biosci. 2007; 12: 1956-1962.
Ramírez-Sánchez I, Mendoza-Lorenzo P, Zentella-Dehesa A, Méndez-Bolaina E, Lara-Padilla E, Ceballos-Reyes G et al. Caveolae and noncaveolae lipid rafts microdomains of HUVEC contain utrophin-associated protein complexes. Biochimie. 2012; 94: 1884-1890.