2015, Number 4
<< Back Next >>
Rev Mex Patol Clin Med Lab 2015; 62 (4)
Creatinuria predicted from urine density as the denominator of the index of excretion of a substance
Salabarría GJR, Santana PS, Liriano RMR
Language: Spanish
References: 32
Page: 220-229
PDF size: 360.30 Kb.
ABSTRACT
Rationale: Accuracy of the urinary concentration of a substance as predicted from index of excretion IndEx = C
sust/OCre critically relies upon OCre: creatinine urinary concentration. OCre can be stocastically approximated from urinary density (D).
Objective: To assess clinical and diagnostic usefulness of the urinary concentration of a substance when OCre as predicted from D is used as denominator of IndEx.
Material and methods: Values of D, OCre and concentrations C
sust of the substance of interest (sust = total proteins, albumin, calcium, magnesium, uric acid) obtained in urine samples collected from children of either sex, with ages between 1-19 years, assisted at the Urine Section, Clinical Laboratory Service, «Juan Manuel Márquez» Pediatric Teaching Hospital (Havana City, Cuba), between 2009-2014, were recovered. = a + b*D
corrected, with D
corrected = (D-1)*100 was used as denominator of IndEx.
Results: Analytical accuracy (estimated from the slope of method-comparisons straight line) was more than 80% within the range of concentrations of interest of the substance. Frequency of abnormal values was similar to any of the strategies used in calculating urinary excretion of the substance.
Conclusions: Use of OCre as predicted from urine density can be an effective strategy for calculating urinary concentration of a substance as an alternative instead of studies currently done with 24 hours-collections.
REFERENCES
Bingham SA, Williams R, Cole TJ, Price CP, Cummings JH. Reference values for analyses of 24-h urine collections known to be complete. Ann Clin Biochem. 1988; 25: 610-619.
Dyer AR, Greenland P, Elliott P, Daviglus ML, Claeys G, Kesteloot H et al. Evaluation of measures of urinary albumin excretion in epidemiologic studies. Am J Epidemiol. 2004; 160: 1122-1131.
Shaw AB, Risdon P, Lewis-Jackson JD. Protein creatinine index and Albustix in assessment of proteinuria. Br Med J (Clin Res Ed). 1983; 287 (6397): 929-932.
Okada S, Tanokuchi S, Ichiki K, Ishii K, Hamada H, Ota Z. Significance of urinary albumin index in the urine collected arbitrarily in the morning. Acta Med Okayama. 1992; 46: 165-168.
Wu HY, Peng YS, Chiang CK, Huang JW, Hung KY, Wu KD et al. Diagnostic performance of random urine samples using albumin concentration vs. ratio of albumin to creatinine for microalbuminuria screening in patients with diabetes mellitus: a systematic review and meta-analysis. JAMA Intern Med. 2014; 174: 1108-1115.
Salabarría-González JR, Santana-Porbén S, Liriano-Ricabal MR. Excreción urinaria de una sustancia predicha del índice de excreción. Rev Latinoam Patol Clín Med Lab. 2015; 62 (2): 120-127.
Filler G, Yasin A, Medeiros M. Methods of assessing renal function. Pediatr Nephrol. 2014; 29: 183-192
Newman DJ, Pugia MJ, Lott JA, Wallace JF, Hiar AM. Urinary protein and albumin excretion corrected by creatinine and specific gravity. Clin Chim Acta. 2000; 294: 139-155.
Moore Jr RR, Hirata-Dulas CA, Kasiske BL. Use of urine specific gravity to improve screening for albuminuria. Kidney Int. 1997; 52: 240-243.
Salabarría-González JR, Santana-Porbén S, Liriano-Ricabal MR. Excreción urinaria de una sustancia predicha de la densidad urinaria. Rev Latinoam Patol Clín Med Lab. 2015; 62 (3): 163-173.
Esquivel-Lauzurique M, Rubí-Álvarez A. Valores de peso para la talla en niños y adolescentes de 0 a 19 años, Cuba, 1982. Rev Cubana Pediatr. 1989; 61: 833-848.
Esquivel M, Rubí A. Curvas nacionales de peso para la talla; su interpretación y uso en la evaluación del estado de nutrición. Rev Cubana Pediatr. 1985; 57: 377-383.
Schwartz GJ, Brion LP, Spitzer A. The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clinics North Am. 1987; 34: 571-590.
Schwartz GJ, Haycock GB, Edelmann CM, Spitzer A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics. 1976; 58: 259-263.
Salabarría-González JR, Santana-Porbén S. Laboratorio clínico y función renal. Madrid: Editorial EAE Académica Española; 2011. ISBN-13: 978-3846568637.
Watanabe N, Kamei S, Ohkubo A, Yamanaka M, Ohsawa S, Makino K et al. Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clinical Chemistry. 1986; 32: 1551-1554.
Microalb-Látex. Juego de reactivos para la determinación de albúmina en muestras de orina. Manual del usuario. Registro número 0308-15. Helfa Diagnósticos. La Habana. Cuba.
Michalylova V, Ilkova P. Photometric determination of micro-amounts of calcium with arsenazo III. Anal Chim Acta. 1971; 53: 194-198.
Kisner HJ, Koch TR, Knoblock EC. Determination of serum and urine magnesium with a centrifugal analyzer. Clin Chem. 1983; 29: 2120-2121.
Gochman N, Schmitz JM. Automated determination of uric acid, with use of an uricase-peroxidase system. Clinical Chemistry. 1971; 17: 1154-1159.
Bartels H, Cikes M. Ueber Chromogene der Kreatininbestimmung nach Jaffé [Chromogens in the creatinine determination of Jaffé]. Clin Chim Acta. 1969; 26: 1-10 [Artículo publicado originalmente en alemán].
Ghazali S, Barrat TM. Urinary excretion of calcium and magnesium in children. Arch Dis Child. 1974; 49: 97-101.
Counahan R, Chantler C, Ghazali S, Kirkwood B, Rose F, Barratt TM. Estimation of glomerular filtration rate from plasma creatinine concentration in children. Arch Dis Child. 1976; 51: 875-878.
Santana-Porbén S, Martínez-Canalejo H. Manual de procedimientos bioestadísticos. 2a edición. Madrid: EAE Editorial Académica Española; 2012. ISBN-13: 9783659059629. ISBN-10: 3659059625.
Jensen AL, Kjelgaard-Hansen M. Method comparison in the clinical laboratory. Vet Clin Pathol. 2006; 35: 276-286.
Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Medicine. 1998; 26: 217-238.
Fraser CG, Petersen PH. Analytical performance characteristics should be judged against objective quality specifications. Clin Chem. 1999; 45: 321-323.
Stöckl D, Dewitte K, Thienpont LM. Validity of linear regression in method comparison studies: Is it limited by the statistical model or the quality of the analytical input data? Clin Chem. 1998; 44: 2340-2346.
Delgado-Ramos A, Ramos-Salazar R, Martínez-Canalejo H, Santana-Porbén S. Procederes de regresión lineal como soluciones al problema de la comparación de métodos. I. Errores analíticos constantes e iguales. Contacto Químico (Michoacán). 2007; 2 (6): 21-23. Reimpreso en: RCAN Rev Cubana Aliment Nutr. 2010; 20: 152-167.
Ramos-Salazar R, Delgado-Ramos A, Martínez-Canalejo H, Santana-Porbén S. Procederes de regresión lineal como soluciones al problema de la comparación de métodos. II. Errores analíticos constantes pero diferentes. Rev Cubana Aliment Nutr. 2010; 20: 338-350. Reimpreso de: Rev Mex Patol Clín. 2001; 48: 223-232.
Obuchowski N. Testing for equivalence of diagnostic tests. Am J Roentgenol. 1997; 168:13-7.
Stroobants AK, Goldschmidt HMJ, Plebani M. Error budget calculations in laboratory medicine: Linking the concepts of biological variation and allowable medical errors. Clin Chim Acta. 2003; 333: 169-176.