2015, Number 2
<< Back Next >>
Investigación en Discapacidad 2015; 4 (2)
Telomere maintenance and bone tumors
Hidalgo BA, Valdés FM
Language: Spanish
References: 44
Page: 78-85
PDF size: 156.35 Kb.
ABSTRACT
Telomeres are DNA and protein complexes located at the end of linear chromosomes; they help to maintain genomic stability. Under normal conditions, in somatic cells, telomeres shorten after each cell division. When telomeres reach a certain length, the cell enters a phase called «senescence». However, some cells escape senescence; telomeres from those cells continue getting shorter until they reach a length at which the cell enters a phase called «crisis». At this point, genomic instability occurs and can lead to cell death. Some cells successfully activate a mechanism to restore telomere length and continue proliferating. The activation of a telomere maintenance mechanism is a key feature of neoplastic cells. There are two known telomere maintenance mechanisms: one is the reactivation of the enzyme telomerase, which is used in 85% of human cancers, and the second is the activation of an alternative lengthening of telomeres pathway (ALT), which is present in 15% of malignant tumors. The telomere maintenance mechanism present in a tumor could be useful as prognostic or treatment indicator. And in the future, it could be a target for antineoplastic therapies.
REFERENCES
Palm W, de Lange T. How shelterin protects mammalian telomeres. Annu Rev Genet. 2008; 42: 301-334.
Compton SA, Choi JH, Cesare AJ, Ozgur S, Griffith JD. Xrcc3 and Nbs1 are required for the production of extrachromosomal telomeric circles in human alternative lengthening of telomere cells. Cancer Res. 2007; 67 (4): 1513-1519.
Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H et al. Mammalian telomeres end in a large duplex loop. Cell. 1999; 97 (4): 503-514.
De Lange T. Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev. 2005; 19 (18): 2100-2110.
Loayza D, de Lange T. POT1 as a terminal transducer of TRF1 telomere length control. Nature. 2003; 423 (6943): 1013-1018.
Takai H, Smogorzewska A, de Lange T. DNA damage foci at dysfunctional telomeres. Curr Biol. 2003; 13 (17): 1549-1556.
Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007; 448 (7157): 1068-1071.
Cesare AJ, Kaul Z, Cohen SB, Napier CE, Pickett HA, Neumann AA et al. Spontaneous occurrence of telomeric DNA damage response in the absence of chromosome fusions. Nat Struct Mol Biol. 2009; 16 (12): 1244-1251.
Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990; 345 (6274): 458-460.
Reddel RR. Alternative lengthening of telomeres, telomerase, and cancer. Cancer Lett. 2003; 194 (2): 155-162.
Wei W, Sedivy JM. Differentiation between senescence (M1) and crisis (M2) in human fibroblast cultures. Exp Cell Res. 1999; 253 (2): 519-522.
Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer. 1997; 33 (5): 787-791.
Shay JW, Roninson IB. Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene. 2004; 23 (16): 2919-2933.
Bryan TM, Reddel RR. Telomere dynamics and telomerase activity in in vitro immortalised human cells. Eur J Cancer. 1997; 33 (5): 767-773.
Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry (Mosc). 2010; 75 (13): 1563-1583.
Greider CW, Blackburn EH. The telomere terminal transferase of tetrahymena is a ribonucleoprotein enzyme with two kinds of primer specificity. Cell. 1987; 51 (6): 887-898.
Hsu M, Yu EY, Singh SM, Lue NF. Mutual dependence of Candida albicans Est1p and Est3p in telomerase assembly and activation. Eukaryot Cell. 2007; 6 (8): 1330-1338.
Mitchell JR, Collins K. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell. 2000; 6 (2): 361-371.
Skvortsov DA, Zvereva ME, Shpanchenko OV, Dontsova OA. Assays for detection of telomerase activity. Acta Naturae. 2011; 3 (1): 48-68.
Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010; 11 (5): 319-330.
Varley H, Pickett HA, Foxon JL, Reddel RR, Royle NJ. Molecular characterization of inter-telomere and intra-telomere mutations in human ALT cells. Nat Genet. 2002; 30 (3): 301-305.
Jiang WQ, Zhong ZH, Henson JD, Neumann AA, Chang AC, Reddel RR, et al. Suppression of alternative lengthening of telomeres by Sp100-mediated sequestration of the MRE11/RAD50/NBS1 complex. Mol Cell Biol. 2005; 25 (7): 2708-2721.
Nabetani A, Ishikawa F. Unusual telomeric DNAs in human telomerase-negative immortalized cells. Mol Cell Biol. 2009; 29 (3): 703-713.
Yeager TR, Neumann AA, Englezou A, Huschtscha LI, Noble JR, Reddel RR et al. Telomerase-negative immortalized human cells contain a novel type of promyelocytic leukemia (PML) body. Cancer Res. 1999; 59 (17): 4175-4179.
Draskovic I, Arnoult N, Steiner V, Bacchetti S, Lomonte P, Londono-Vallejo A et al. Probing PML body function in ALT cells reveals spatiotemporal requirements for telomere recombination. Proc Natl Acad Sci U S A. 2009; 106 (37): 15726-15731.
Pickett HA, Cesare AJ, Johnston RL, Neumann AA, Reddel RR. Control of telomere length by a trimming mechanism that involves generation of t-circles. EMBO J. 2009; 28 (7): 799-809.
Fasching CL, Neumann AA, Muntoni A, Yeager TR, Reddel RR. DNA damage induces alternative lengthening of telomeres (ALT) associated promyelocytic leukemia bodies that preferentially associate with linear telomeric DNA. Cancer Res. 2007; 67 (15): 7072-7077.
Jeyapalan JN, Varley H, Foxon JL, Pollock RE, Jeffreys AJ, Henson JD et al. Activation of the ALT pathway for telomere maintenance can affect other sequences in the human genome. Hum Mol Genet. 2005; 14 (13): 1785-1794.
Londono-Vallejo JA, Der-Sarkissian H, Cazes L, Bacchetti S, Reddel RR. Alternative lengthening of telomeres is characterized by high rates of telomeric exchange. Cancer Res. 2004; 64 (7): 2324-2327.
Maringele L, Lydall D. EXO1 plays a role in generating type I and type II survivors in budding yeast. Genetics. 2004; 166 (4): 1641-1649.
Chen Q, Ijpma A, Greider CW. Two survivor pathways that allow growth in the absence of telomerase are generated by distinct telomere recombination events. Mol Cell Biol. 2001; 21 (5): 1819-1827.
Bonetti D, Martina M, Clerici M, Lucchini G, Longhese MP. Multiple pathways regulate 3’ overhang generation at S. cerevisiae telomeres. Mol Cell. 2009; 35 (1): 70-81.
Matsuo T, Shimose S, Kubo T, Fujimori J, Yasunaga Y, Ochi M. Telomeres and telomerase in sarcomas. Anticancer Res. 2009; 29 (10): 3833-3836.
Ohali A, Avigad S, Cohen IJ, Meller I, Kollender Y, Issakov J et al. Association between telomerase activity and outcome in patients with non metastatic Ewing family of tumors. J Clin Oncol. 2003; 21 (20): 3836-3843.
Terasaki T, Kyo S, Takakura M, Maida Y, Tsuchiya H, Tomita K et al. Analysis of telomerase activity and telomere length in bone and soft tissue tumors. Oncol Rep. 2004; 11 (6): 1307-1311.
Ulaner GA, Hoffman AR, Otero J, Huang HY, Zhao Z, Mazumdar M et al. Divergent patterns of telomere maintenance mechanisms among human sarcomas: sharply contrasting prevalence of the alternative lengthening of telomeres mechanism in Ewing’s sarcomas and osteosarcomas. Genes Chromosomes Cancer. 2004; 41 (2): 155-162.
Matsuo T, Hiyama E, Sugita T, Shimose S, Kubo T, Mochizuki Y et al. Telomerase activity in giant cell tumors of bone. Ann Surg Oncol. 2007; 14 (10): 2896-2902.
Forsyth RG, De Boeck G, Bekaert S, De Meyer T, Taminiau AH, Uyttendaele D et al. Telomere biology in giant cell tumour of bone. J Pathol. 2008; 214 (5): 555-563.
Gorunova L, Vult von Steyern F, Storlazzi CT, Bjerkehagen B, Folleras G, Heim S et al. Cytogenetic analysis of 101 giant cell tumors of bone: nonrandom patterns of telomeric associations and other structural aberrations. Genes Chromosomes Cancer. 2009; 48 (7): 583-602.
Letsolo BT, Rowson J, Baird DM. Fusion of short telomeres in human cells is characterized by extensive deletion and microhomology, and can result in complex rearrangements. Nucleic Acids Res. 2010; 38 (6): 1841-1852.
Ulaner GA, Huang HY, Otero J, Zhao Z, Ben-Porat L, Satagopan JM et al. Absence of a telomere maintenance mechanism as a favorable prognostic factor in patients with osteosarcoma. Cancer Res. 2003; 63 (8): 1759-1763.
Sanders RP, Drissi R, Billups CA, Daw NC, Valentine MB, Dome JS. Telomerase expression predicts unfavorable outcome in osteosarcoma. J Clin Oncol. 2004; 22 (18): 3790-3797.
Sotillo-Pineiro E, Sierrasesumaga L, Patinno-Garcia A. Telomerase activity and telomere length in primary and metastatic tumors from pediatric bone cancer patients. Pediatr Res. 2004; 55 (2): 231-235.
Gocha AR, Nuovo G, Iwenofu OH, Groden J. Human sarcomas are mosaic for telomerase-dependent and telomerase-independent telomere maintenance mechanisms: Implications for telomere-based therapies. Am J Pathol. 2013; 182 (1): 41-48.