2015, Number 1
<< Back Next >>
VacciMonitor 2015; 24 (1)
Application of Neesler reagent in the ammonium quantification used in the fermentations of biotechnology products
Miyares-Estrada M, Torres-Idavoy D, Padrón-Morales S, Valdés-Hernández J, Díaz-Martínez M, Bonilla-Hernández RM
Language: Spanish
References: 16
Page: 33-44
PDF size: 169.81 Kb.
ABSTRACT
The ammonium salts are used in fermentations to supplement the deficient amounts of nitrogen and stabilize the pH of the culture medium. The excess ammonium ion exerts a detrimental effect on the fermentation process inhibiting microbial growth. An analytical method based on Neesler reagent was developed for monitoring and controlling the concentration of ammonium during the fermentation process. The test was
standardized, by means of the selection of measuring equipment, and the reaction time as well as comparing
standards of ammonium salts. The method was characterized with the evaluation of the next parameters: Specificity, Linearity and Range, Quantification Limit, Accuracy and Precision. The method proved to be specific. Two linear curves were defined in the ranges of concentrations of ammonium chloride salt (2-20 µg/ml) and ammonium sulfate salt (5-30 µg/ml). The limits of quantification were the lowest points of each one. The method proved to be accurate and precise. This assay was applied to samples of the yeast culture and bacteria of the genus
Saccharomyces and
E. coli respectively. A novel method in micro plate for
quantification and analytical control of ammonia was developed. This method is used to control this
fundamental chemical component in the fermentations, to optimize the culture medium. Thus, an appropriate
expression of recombinant proteins and proper vaccine candidates for clinical use are achieved.
REFERENCES
Vogel A. Química analítica cualitativa. Buenos Aires: Kapelusz; 1953.
Boltz DF, Howell JA. Colorimetric determination of nonmetals. 2nd ed. New York: John Wiley Edition; 1978.
Norma Mexicana. NMX-K 1968-231. México D.F: Secretaria de Comercio y Fomento Industrial (SECOFI); 1968.
Cáceres J. Evaluación analítica y optimización de procesos de oxidación avanzada en planta piloto solar. [Tesis Doctoral]. Andalucía: Universidad de Almería; 2002.
Estrada-Fernández P, Riolobos-Regadera MC, Gutiérrez Delgado JD. Manual de Control Analítico de la Potabilidad de las Aguas de Consumo Humano. 1a ed. Madrid: Díaz de Santos; 1983.
AWWA. Standard Methods for the examination of water and wastewater. 16a edition. Washington: American Public Health Association-American Water Works Association-Water Environment Federation; 1985.
Sigarroa A. Biometría y Diseño experimental. La Habana: Edición Pueblo y Educación; 1985.
Romer J. "Análisis de agua". Barcelona: Eds. Omega S.A; 1989.
Chaloner-Larsson G, Anderson R, Egan A. WHO guide to good manufacturing practice (GMP) requirements. Part 2: Validation. Validation of analytical assays. Geneva: WHO; 1997.
Serret A, Rosales I. Validación de métodos analíticos. Segundo Taller Nacional de Validación. La Habana: Grupo Nacional de Validación (GNV); 1997.
International Conference on Harmonisation. ICH validation of analytical procedures: Text and Methodology. London: ICH; 2005.
Walfish S. Analytical Methods: A Statistical Perspective on the ICH Q2A and Q2B Guidelines for Validation of Analytical Methods. BioPharm International 2006;19(12):28-37.
Centro para el Control Estatal de la Calidad de los Medicamentos (CECMED). Validación de Métodos Analíticos. Regulación No.41. La Habana: CECMED; 2007.
Centro para el Control Estatal de la Calidad de los Medicamentos (CECMED). Buenas Prácticas de Laboratorio para el Control de Medicamentos. Anexo 1 Regulación No.37. La Habana: CECMED; 2012.
García J. Aplicación del análisis de riesgo a la producción de proteínas recombinantes expresadas en Escherichia coli. VacciMonitor 2012;21(2):35-42.
García J. Estrategias de obtención de proteínas recombinantes en Escherichia coli. VacciMonitor 2013;22(2):30-9.