2015, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2015; 34 (1)
Foreign body reaction to microchip implantation
Moreno CS, Moreno GF, Medina CS
Language: Spanish
References: 88
Page:
PDF size: 206.31 Kb.
ABSTRACT
Introduction: passive RFID microchips are currently being implanted subcutaneously
in both animals and humans for a variety of medical, forensic and commercial
purposes. However, despite the fact that implantation techniques have been approved
and certified, there is controversy about the potential development of neoplasms
resulting from foreign body reaction as a mechanism of host response.
Objective: describe the origin and development of foreign body reaction to
subcutaneous implantation of a passive RFID microchip and its potential association
with neoplastic lesions. immunohistochemical techniques.
Methods: a systematic search of the literature was conducted in PubMed to obtain
publications describing the histological responses (foreign body reaction) of periimplant
tissue following subcutaneous implantation of a passive RFID microchip by
conventional histological and immunohistochemical techniques.
Results: twenty one publications were obtained describing lesions at peri-implant
tissue, of which four dealt with neoplastic lesions of mesenchymal origin
(fibrosarcomas, malignant fibrous histiocytoma, malignant schwannoma, anaplastic
sarcoma and histiocytic sarcoma).
Conclusions: based on the literature reviewed and the available scientific evidence, it
is not possible to determine that subcutaneous implantation of a passive RFID
microchip is a risk factor for tumorigenesis.
REFERENCES
Landt J. Shrouds of Time: the history of RFID. First edition. Pittsburg: The Association of the Automatic Identification and Data Capture Industry. 2001:1-11.
Roberts CM. Radio frequency identification (RFID). Computers & Security. 2006;25:18-26.
Masters A, Michael K. Lend me your arms: The use and implications of humancentric RFID. Electronic Commerce Research and Applications. 2006;6(1):29-39.
Wong KHM, Hui PCL, Chan ACK. Cryptography and authentication on RFID passive tags for apparel products. Computers in Industry. 2006;57:342-9.
Department of Health and Human Services. Class II Special Controls Guidance Document: Implantable Radiofrequency Transponder System for Patient Identification and Health Information. Food and Drug Administration Rules and Regulations. 2004;69(237):71702-4.
ISO 3166. Codes for the Representation of Names of Countries. International Organization for Standardization; 1993.
ISO 11784. Radio Frequency Identification of Animals: Code Structure. International Organization for Standardization; 1996.
ISO 11785. Radio Frequency Identification of Animals: Technical Concept. International Organisation for Standardization; 1996.
Hench L. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967-78.
Park D, Wieser J. Summary of Field Studies Evaluating the Efficacy of BioBond® A Porous Polymer Sheath, on Radio Frequency Identification (RFID): Transponders to Prevent Migration from a Known Implant Site. [citado 02 Feb 2014]. Disponible en: http://www.identipet.com/docs/biobond.pdf
Jansen JA, Van der Waerden JP, Gwalter RH, Van Rooy SA. Biological and migrational characteristics of transponders implanted into beagle dogs. Vet Rec. 1999;145(12):329-33.
Linder M, Hüther S, Reinacher M. In vivo reactions in mice and in vitro reactions in feline cells to implantable microchip transponders with different surface materials. Vet Rec. 2009;165(2):45-50.
Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2(6):1003-15.
Kaminska M, Okrój W, Szymanski W, Jakubowski W, Komorowski P, Nosal A, et al. Interaction of parylene C with biological objects. Acta Bioeng Biomech. 2009;11(3):19- 25.
Lee DS, Kim SJ, Sohn DW, Choi BK, Lee MK, Lee SJ, et al. Biocompatibility of Parylene-C as a Coating Material of Implantable Bladder Volume Sensor. Korean J Andro. 2010;28(3):175-83.
Wei L, Lakhtakia A, Roopnariane AP, Ritty TM. Human fibroblast attachment on fibrous parylene-C thin-film substrates. Materials Science and Engineering C. 2010;30(8):1252-9.
Mehrjerdi YZ. Radio frequency identification: the big role player in health care management. J Health Organ Manag. 2011;25(5):490-505.
Smith AD. Evolution and acceptability of medical applications of RFID implants among early users of technology. Health Mark Q. 2007;24(1-2):121-55.
Oztaysi B, Baysan S, Akpinar F. Radio frequency identification (RFID) in hospitality. Technovation. 2009;29:618-24.
Wamba SF. RFID-Enabled Healthcare Applications, Issues and Benefits: An Archival Analysis (1997–2011). J Med Syst. 2012;36(6):3393-8.
Yao W, Chu CH, Li Z. The adoption and implementation of RFID technologies in healthcare: a literature review. J Med Syst. 2012;36(6):3507-25.
Richmond R, Phil M, Pretty IA. Contemporary methods of labeling dental prostheses. A review of the literature. J Forensic Sci. 2006;51(5):1338-42.
Rajan M, Julian R. A new method of marking dentures using microchips. J Forensic Odontostomatol. 2002;20(1):1-5.
Ling BC, Nambiar P, Low KS, Lee CK. Copper vapour laser ID labeling on metal dentures and restorations. J Forensic Odontostomatol. 2003;21(1):17-22.
Millet C, Jeannin C. Incorporation of microchips to facilitate denture identification by radio frequency tagging. J Prosthet Dent. 2004;92(6):588-90.
Madrid C, Korsvold T, Rochat A, Abarca M. Radio frequency identification (RFID) of dentures in long-term care facilities. J Prosthet Dent. 2012;107:199-202.
Moreno F, Moreno S, Marín L. Identificación Odontológica Forense: Revisión de la Literatura y Reporte de un Caso. USTASalud Odontológica. 2007;6:60-6.
Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part I: Working principle. Forensic Science International. 2006;159:33-9.
Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part 2: Physical properties. Forensic Science International. 2006;159:40-6.
Aragón N, Moreno F, Salazar L. In vitro behavior of interfaces in human molars with an implanted passive RFID microchip and subjected to compression forces. DYNA 2013;80(178):5-10.
Moreno F, Vallejo D, Garzón H, Moreno S. In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification. J Forensic Dent Sci. 2013;5:77-84.
Albrecht K. Microchip-Induced Tumors in Laboratory Rodents and Dogs: A Review of the Literature 1990-2006. Technology and Society (ISTAS). 2010:337-49.
Spector M, Cease C, Tong-Li X. The local tissue response to biomaterial. Crit Rev Biocompatibility. 1989;5:269-95.
Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81- 110.
Williams DF. Tissue-biomaterial interactions. J Mater Sci. 1987;22:3421-45.
Anderson JM, Rodríguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in Immunology. 2008;20:86-100.
Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1/2):1-18.
Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955-70.
Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555- 62.
Jenney CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res. 2000;49(4):435-47.
Clark RA, Lanigan JM, Della P. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982;79:264-9.
Wahl SM, Wong H, McCartney-Francis N. Role of growth factors in inflammation and repair. J Cell Biochem. 1989;40:193-9.
Malech HL, Gallin JI. Neutrophils in human diseases. N Engl J Med. 1987;317:687- 94.
Lehrer R, Ganz T, Selsted ME. Neutrophils and host defense. Ann Intern Med. 1988;109:127-42
Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204(1):19-28.
Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA. 1998;95(15):8841-6.
Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610-21.
Jutila MA. Leukocyte traffic to sites of inflammation. APMIS. 1992;100:191-201.
Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301-14.
Simon SI, Green CE. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng. 2005;7:151-85.
Henson PM. Mechanisms of exocytosis in phagocytic inflammatory cells. Am J Pathol. 1980;101:494-511.
Johnston RB Jr. Current concepts: Immunology. Monocytes and macrophages. N Engl J Med. 1988;318:747-52.
Rae T. The macrophage response to implant materials. Crit Rev Biocompatibility. 1986;2:97-126.
Ziats NP, Miller KM, Anderson JM. In vitro and in vivo Interactions of Cells with Biomaterials. Biomaterials. 1988;9:5-13.
Berton G, Lowell CA. Integrin signalling in neutrophils and macrophages. Cell Signal. 1999;11(9):621-35.
Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cáncer Metastasis Rev. 2005;24(3):425-39.
Esche C, Stellato C, Beck LA. Chemokines: Key players in innate and adaptive immunity. J Invest Dermatol. 2005;125(4):615-28.
Kumar A, Abbas AK, Fausto N, Aster JC. Robbins and Cotran Pathology Basis of Disease. 8th Edition. Saunders-Elsevier: Philadelphia. 2010.
Jenney CR, Anderson JM. Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res. 1998;44:206-16.
Jenney CR, DeFife KM, Colton E, Anderson JM. Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. J Biomed Mater Res. 1998;41:171-84.
Brand KG, Buoen LC, Johnson KH. Etiological Factors, Stages, and the Role of the Foreign Body in Foreign Body Tumorigenesis A Review. Cancer Res. 1975;35:279-86.
Elcock LE, Stuart BP, Whale BS, Hoss HE, Crab K, Millard DM, et al. Tumors in long-term rat studies associated with microchip animal identification devices. Exp Toxic Pathol. 2001;52:483-91.
Sura R, French RA, Goldman BD, Schwartz DR. Neoplasia and Granulomas Surrounding Microchip Transponders in Damaraland Mole Rats (Cryptomys damarensis). Vet Pathol. 2011;48(4):896-902.
Le Calvez S, Perron-Lepage M-F, Burnett R. Subcutaneous microchip-associated tumours in B6C3F1 mice: A retrospective study to attempt to determine their histogenesis. Experimental and Toxicologic Pathology. 2006;57:255-65.
Chan JK. Advances in immunohistochemistry: impact on surgical pathology practice. Semin Diagn Pathol. 2000;17;170-7.
Brooks JS. Immunohistochemistry in the differential diagnosis of soft tissue tumors. Monogr Pathol. 1996;38:65-128.
Coindre JM. Immunohistochemistry in the diagnosis of soft tissue tumours. Histopathology. 2003;43:1-16.
Rao GN, Edmondson J. Tissue reaction to an implantable identification device in mice. Toxicol Pathol. 1990;18(3):412-6.
Ball DJ, Argentieri G, Krause R, Lipinski M, Robison ML, Stoll RE, et al. Evaluation of a Microchip Implant System Used for Animal Identification in Rats. Laboratory Animal Science. 1991;41(2):185-6.
Lambooij E, de Groot PH, Molenbeek RF, Gruys E. Subcutaneous tissue reaction to polyethylene terephtalate-covered electronic identification transponders in pigs. Vet Q. 1992;14(4):145-7.
Gruys E, Schakenraad JM, Kruit LK, Bolscher JM. Biocompatibility of glassencapsulated electronic chips (transponders) used for the identification of pigs. Vet Rec. 1993;133(16):385-8.
Mrozek M, Fischer R, Trendelenburg M, Zillmann U. Microchip implant system used for animal identification in laboratory rabbits, guineapigs, woodchucks and in amphibians. Lab Anim. 1995;29(3):339-44.
Lammers GH, Langeveld NG, Lambooij E, Gruys E. Effects of injecting electronic transponders into the auricle of pigs. Veterinary Record. 1995;136:606-9.
Tillmann T, Kamino K, Dasenbrock C, Ernst H, Kohler M, Morawietz G, et al. Subcutaneous soft tissue tumours at the site of implanted microchips in mice. Exp Toxicol Pathol. 1997;49(3-4):197-200.
Jansen JA, van der Waerden JP, Gwalter RH, van Rooy SA. Biological and migrational characteristics of transponders implanted into beagle dogs. Vet Rec. 1999;145(12):329-33.
Blanchard KT, Barthel C, French JE, Holden HE, Moretz R, Pack FD, et al. Transponder-induced sarcoma in the heterozygous p53+/- mouse. Toxicol Pathol. 1999;27(5):519-27.
Vascellari M, Melchiotti E, Bozza MA, Mutinelli F. Fibrosarcomas at presumed sites of injection in dogs: characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J Vet Med A Physiol Pathol Clin Med. 2003;50(6):286-91.
Vascellari M, Mutinelli F, Cossettini R, Altinier E. Liposarcoma at the site of an implanted microchip in a dog. Vet J. 2004;168(2):188-90.
Vascellari M, Melchiotti E, Mutinelli F. Fibrosarcoma with typical features of postinjection sarcoma at site of microchip implant in a dog: histologic and immunohistochemical study. Vet Pathol. 2006;43(4):545-8.
Daly MK, Saba CF, Crochik SS, Howerth EW, Kosarek CE, Cornell KK, et al. Fibrosarcoma adjacent to the site of microchip implantation in a cat. J Feline Med Surg. 2008;10(2):202-5.
Gruda MC, Pinto A, Craelius A, Davidowitz H, Kopacka WM, Li J, et al. A system for implanting laboratory mice with light-activated microtransponders. J Am Assoc Lab Anim Sci. 2010;49(6):826-31.
Schutt LK, Turner PV. Microchip-Associated Sarcoma in a Shrew (Suncus murinus). Journal of the American Association for Laboratory Animal Science. 2010;49(5):638- 41.
Carminato A, Vascellari M, Marchioro W, Melchiotti E, Mutinelli F. Microchipassociated fibrosarcoma in a cat. Vet Dermatol. 2011;22(6):565-9
Wulf M, Wohlsein P, Aurich JE, Nees M, Baumgärtner W, Aurich C, et al. Readability and histological biocompatibility of microchip transponders in horses. Vet J. 2013;198(1):103-8.
Chang TY, Yadav VG, De Leo S, Mohedas A, Rajalingam B, Chen CL, et al. Cell and protein compatibility of parylene-C surfaces. Langmuir. 2007;23(23):11718-25.
Tomida M, Nakano K, Matsuura S, Kawakami T. Comparative examination of subcutaneous tissue reaction to high molecular materials in medical use. Eur J Med Res. 2011;16(6):249-52
Lee DS, Kim SJ, Kwon EB, Park Ch-W, Jun SM, Choi B, et al. Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices. Bulletin of Materials Science. 2013;36(6):1127-32.
Wei L, Lakhtakia A, Roopnariane AP, Ritty TM. Human fibroblast attachment on fibrous parylene-C thin-film substrates. Materials Science and Engineering. 2010;30:1252-9.