2015, Número 1
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2015; 34 (1)
Reacción a cuerpo extraño por implantación de un microchip
Moreno CS, Moreno GF, Medina CS
Idioma: Español
Referencias bibliográficas: 88
Paginas:
Archivo PDF: 206.31 Kb.
RESUMEN
Introducción: en la actualidad se implantan de forma subcutánea, microchips RFID
pasivos, en animales y seres humanos con diferentes fines médicos, forenses y
comerciales. No obstante, y pese a que la técnica de implantación se encuentra
avalada y certificada, existe controversia ante la posibilidad de generar neoplasias, a
partir de la reacción a cuerpo extraño como mecanismos de respuesta del huésped.
Objetivo: describir el origen y desarrollo de la reacción a cuerpo extraño por la
implantación subcutánea de un microchip RFID pasivo y su posible asociación con
lesiones neoplásicas.
Métodos: se realizó una revisión sistemática de la literatura a través de PubMed, para
obtener las publicaciones que describieran las respuestas histológicas (reacción a
cuerpo extraño), de los tejidos peri-implantares durante la implantación subcutánea de
un microchip RFID pasivo, mediante técnicas histológicas convencionales y técnicas
inmunohistoquímicas.
Resultados: se obtuvieron 21 publicaciones que describen las lesiones de los tejidos
periimplantares, de los cuales, cuatro establecieron lesiones neoplásicas de origen
mesenquimático (fibrosarcomas, histiocitoma fibroso maligno, Shwanoma maligno,
sarcoma anaplásico y sarcoma histiocítico).
Conclusiones: de acuerdo a la literatura revisada y la evidencia científica disponible,
no es posible determinar que la implantación subcutánea de un microchip RFID pasivo,
se constituya en un factor de riesgo asociado a tumorogénesis.
REFERENCIAS (EN ESTE ARTÍCULO)
Landt J. Shrouds of Time: the history of RFID. First edition. Pittsburg: The Association of the Automatic Identification and Data Capture Industry. 2001:1-11.
Roberts CM. Radio frequency identification (RFID). Computers & Security. 2006;25:18-26.
Masters A, Michael K. Lend me your arms: The use and implications of humancentric RFID. Electronic Commerce Research and Applications. 2006;6(1):29-39.
Wong KHM, Hui PCL, Chan ACK. Cryptography and authentication on RFID passive tags for apparel products. Computers in Industry. 2006;57:342-9.
Department of Health and Human Services. Class II Special Controls Guidance Document: Implantable Radiofrequency Transponder System for Patient Identification and Health Information. Food and Drug Administration Rules and Regulations. 2004;69(237):71702-4.
ISO 3166. Codes for the Representation of Names of Countries. International Organization for Standardization; 1993.
ISO 11784. Radio Frequency Identification of Animals: Code Structure. International Organization for Standardization; 1996.
ISO 11785. Radio Frequency Identification of Animals: Technical Concept. International Organisation for Standardization; 1996.
Hench L. The story of Bioglass. J Mater Sci Mater Med. 2006;17:967-78.
Park D, Wieser J. Summary of Field Studies Evaluating the Efficacy of BioBond® A Porous Polymer Sheath, on Radio Frequency Identification (RFID): Transponders to Prevent Migration from a Known Implant Site. [citado 02 Feb 2014]. Disponible en: http://www.identipet.com/docs/biobond.pdf
Jansen JA, Van der Waerden JP, Gwalter RH, Van Rooy SA. Biological and migrational characteristics of transponders implanted into beagle dogs. Vet Rec. 1999;145(12):329-33.
Linder M, Hüther S, Reinacher M. In vivo reactions in mice and in vitro reactions in feline cells to implantable microchip transponders with different surface materials. Vet Rec. 2009;165(2):45-50.
Onuki Y, Bhardwaj U, Papadimitrakopoulos F, Burgess DJ. A review of the biocompatibility of implantable devices: current challenges to overcome foreign body response. J Diabetes Sci Technol. 2008;2(6):1003-15.
Kaminska M, Okrój W, Szymanski W, Jakubowski W, Komorowski P, Nosal A, et al. Interaction of parylene C with biological objects. Acta Bioeng Biomech. 2009;11(3):19- 25.
Lee DS, Kim SJ, Sohn DW, Choi BK, Lee MK, Lee SJ, et al. Biocompatibility of Parylene-C as a Coating Material of Implantable Bladder Volume Sensor. Korean J Andro. 2010;28(3):175-83.
Wei L, Lakhtakia A, Roopnariane AP, Ritty TM. Human fibroblast attachment on fibrous parylene-C thin-film substrates. Materials Science and Engineering C. 2010;30(8):1252-9.
Mehrjerdi YZ. Radio frequency identification: the big role player in health care management. J Health Organ Manag. 2011;25(5):490-505.
Smith AD. Evolution and acceptability of medical applications of RFID implants among early users of technology. Health Mark Q. 2007;24(1-2):121-55.
Oztaysi B, Baysan S, Akpinar F. Radio frequency identification (RFID) in hospitality. Technovation. 2009;29:618-24.
Wamba SF. RFID-Enabled Healthcare Applications, Issues and Benefits: An Archival Analysis (1997–2011). J Med Syst. 2012;36(6):3393-8.
Yao W, Chu CH, Li Z. The adoption and implementation of RFID technologies in healthcare: a literature review. J Med Syst. 2012;36(6):3507-25.
Richmond R, Phil M, Pretty IA. Contemporary methods of labeling dental prostheses. A review of the literature. J Forensic Sci. 2006;51(5):1338-42.
Rajan M, Julian R. A new method of marking dentures using microchips. J Forensic Odontostomatol. 2002;20(1):1-5.
Ling BC, Nambiar P, Low KS, Lee CK. Copper vapour laser ID labeling on metal dentures and restorations. J Forensic Odontostomatol. 2003;21(1):17-22.
Millet C, Jeannin C. Incorporation of microchips to facilitate denture identification by radio frequency tagging. J Prosthet Dent. 2004;92(6):588-90.
Madrid C, Korsvold T, Rochat A, Abarca M. Radio frequency identification (RFID) of dentures in long-term care facilities. J Prosthet Dent. 2012;107:199-202.
Moreno F, Moreno S, Marín L. Identificación Odontológica Forense: Revisión de la Literatura y Reporte de un Caso. USTASalud Odontológica. 2007;6:60-6.
Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part I: Working principle. Forensic Science International. 2006;159:33-9.
Thevissen PW, Poelman G, De Cooman M, Puers R, Willems G. Implantation of an RFID-tag into human molars to reduce hard forensic identification labor. Part 2: Physical properties. Forensic Science International. 2006;159:40-6.
Aragón N, Moreno F, Salazar L. In vitro behavior of interfaces in human molars with an implanted passive RFID microchip and subjected to compression forces. DYNA 2013;80(178):5-10.
Moreno F, Vallejo D, Garzón H, Moreno S. In vitro evaluation of a passive radio frequency identification microchip implanted in human molars subjected to compression forces, for forensic purposes of human identification. J Forensic Dent Sci. 2013;5:77-84.
Albrecht K. Microchip-Induced Tumors in Laboratory Rodents and Dogs: A Review of the Literature 1990-2006. Technology and Society (ISTAS). 2010:337-49.
Spector M, Cease C, Tong-Li X. The local tissue response to biomaterial. Crit Rev Biocompatibility. 1989;5:269-95.
Anderson JM. Biological responses to materials. Annu Rev Mater Res. 2001;31:81- 110.
Williams DF. Tissue-biomaterial interactions. J Mater Sci. 1987;22:3421-45.
Anderson JM, Rodríguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in Immunology. 2008;20:86-100.
Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ. Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng. 2005;11(1/2):1-18.
Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006;12(7):1955-70.
Frisch SM, Screaton RA. Anoikis mechanisms. Curr Opin Cell Biol. 2001;13(5):555- 62.
Jenney CR, Anderson JM. Adsorbed serum proteins responsible for surface dependent human macrophage behavior. J Biomed Mater Res. 2000;49(4):435-47.
Clark RA, Lanigan JM, Della P. Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol. 1982;79:264-9.
Wahl SM, Wong H, McCartney-Francis N. Role of growth factors in inflammation and repair. J Cell Biochem. 1989;40:193-9.
Malech HL, Gallin JI. Neutrophils in human diseases. N Engl J Med. 1987;317:687- 94.
Lehrer R, Ganz T, Selsted ME. Neutrophils and host defense. Ann Intern Med. 1988;109:127-42
Song E, Ouyang N, Horbelt M, Antus B, Wang M, Exton MS. Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 2000;204(1):19-28.
Tang L, Jennings TA, Eaton JW. Mast cells mediate acute inflammatory responses to implanted biomaterials. Proc Natl Acad Sci USA. 1998;95(15):8841-6.
Charo IF, Ransohoff RM. The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med. 2006;354(6):610-21.
Jutila MA. Leukocyte traffic to sites of inflammation. APMIS. 1992;100:191-201.
Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301-14.
Simon SI, Green CE. Molecular mechanics and dynamics of leukocyte recruitment during inflammation. Annu Rev Biomed Eng. 2005;7:151-85.
Henson PM. Mechanisms of exocytosis in phagocytic inflammatory cells. Am J Pathol. 1980;101:494-511.
Johnston RB Jr. Current concepts: Immunology. Monocytes and macrophages. N Engl J Med. 1988;318:747-52.
Rae T. The macrophage response to implant materials. Crit Rev Biocompatibility. 1986;2:97-126.
Ziats NP, Miller KM, Anderson JM. In vitro and in vivo Interactions of Cells with Biomaterials. Biomaterials. 1988;9:5-13.
Berton G, Lowell CA. Integrin signalling in neutrophils and macrophages. Cell Signal. 1999;11(9):621-35.
Reddig PJ, Juliano RL. Clinging to life: cell to matrix adhesion and cell survival. Cáncer Metastasis Rev. 2005;24(3):425-39.
Esche C, Stellato C, Beck LA. Chemokines: Key players in innate and adaptive immunity. J Invest Dermatol. 2005;125(4):615-28.
Kumar A, Abbas AK, Fausto N, Aster JC. Robbins and Cotran Pathology Basis of Disease. 8th Edition. Saunders-Elsevier: Philadelphia. 2010.
Jenney CR, Anderson JM. Effects of surface-coupled polyethylene oxide on human macrophage adhesion and foreign body giant cell formation in vitro. J Biomed Mater Res. 1998;44:206-16.
Jenney CR, DeFife KM, Colton E, Anderson JM. Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. J Biomed Mater Res. 1998;41:171-84.
Brand KG, Buoen LC, Johnson KH. Etiological Factors, Stages, and the Role of the Foreign Body in Foreign Body Tumorigenesis A Review. Cancer Res. 1975;35:279-86.
Elcock LE, Stuart BP, Whale BS, Hoss HE, Crab K, Millard DM, et al. Tumors in long-term rat studies associated with microchip animal identification devices. Exp Toxic Pathol. 2001;52:483-91.
Sura R, French RA, Goldman BD, Schwartz DR. Neoplasia and Granulomas Surrounding Microchip Transponders in Damaraland Mole Rats (Cryptomys damarensis). Vet Pathol. 2011;48(4):896-902.
Le Calvez S, Perron-Lepage M-F, Burnett R. Subcutaneous microchip-associated tumours in B6C3F1 mice: A retrospective study to attempt to determine their histogenesis. Experimental and Toxicologic Pathology. 2006;57:255-65.
Chan JK. Advances in immunohistochemistry: impact on surgical pathology practice. Semin Diagn Pathol. 2000;17;170-7.
Brooks JS. Immunohistochemistry in the differential diagnosis of soft tissue tumors. Monogr Pathol. 1996;38:65-128.
Coindre JM. Immunohistochemistry in the diagnosis of soft tissue tumours. Histopathology. 2003;43:1-16.
Rao GN, Edmondson J. Tissue reaction to an implantable identification device in mice. Toxicol Pathol. 1990;18(3):412-6.
Ball DJ, Argentieri G, Krause R, Lipinski M, Robison ML, Stoll RE, et al. Evaluation of a Microchip Implant System Used for Animal Identification in Rats. Laboratory Animal Science. 1991;41(2):185-6.
Lambooij E, de Groot PH, Molenbeek RF, Gruys E. Subcutaneous tissue reaction to polyethylene terephtalate-covered electronic identification transponders in pigs. Vet Q. 1992;14(4):145-7.
Gruys E, Schakenraad JM, Kruit LK, Bolscher JM. Biocompatibility of glassencapsulated electronic chips (transponders) used for the identification of pigs. Vet Rec. 1993;133(16):385-8.
Mrozek M, Fischer R, Trendelenburg M, Zillmann U. Microchip implant system used for animal identification in laboratory rabbits, guineapigs, woodchucks and in amphibians. Lab Anim. 1995;29(3):339-44.
Lammers GH, Langeveld NG, Lambooij E, Gruys E. Effects of injecting electronic transponders into the auricle of pigs. Veterinary Record. 1995;136:606-9.
Tillmann T, Kamino K, Dasenbrock C, Ernst H, Kohler M, Morawietz G, et al. Subcutaneous soft tissue tumours at the site of implanted microchips in mice. Exp Toxicol Pathol. 1997;49(3-4):197-200.
Jansen JA, van der Waerden JP, Gwalter RH, van Rooy SA. Biological and migrational characteristics of transponders implanted into beagle dogs. Vet Rec. 1999;145(12):329-33.
Blanchard KT, Barthel C, French JE, Holden HE, Moretz R, Pack FD, et al. Transponder-induced sarcoma in the heterozygous p53+/- mouse. Toxicol Pathol. 1999;27(5):519-27.
Vascellari M, Melchiotti E, Bozza MA, Mutinelli F. Fibrosarcomas at presumed sites of injection in dogs: characteristics and comparison with non-vaccination site fibrosarcomas and feline post-vaccinal fibrosarcomas. J Vet Med A Physiol Pathol Clin Med. 2003;50(6):286-91.
Vascellari M, Mutinelli F, Cossettini R, Altinier E. Liposarcoma at the site of an implanted microchip in a dog. Vet J. 2004;168(2):188-90.
Vascellari M, Melchiotti E, Mutinelli F. Fibrosarcoma with typical features of postinjection sarcoma at site of microchip implant in a dog: histologic and immunohistochemical study. Vet Pathol. 2006;43(4):545-8.
Daly MK, Saba CF, Crochik SS, Howerth EW, Kosarek CE, Cornell KK, et al. Fibrosarcoma adjacent to the site of microchip implantation in a cat. J Feline Med Surg. 2008;10(2):202-5.
Gruda MC, Pinto A, Craelius A, Davidowitz H, Kopacka WM, Li J, et al. A system for implanting laboratory mice with light-activated microtransponders. J Am Assoc Lab Anim Sci. 2010;49(6):826-31.
Schutt LK, Turner PV. Microchip-Associated Sarcoma in a Shrew (Suncus murinus). Journal of the American Association for Laboratory Animal Science. 2010;49(5):638- 41.
Carminato A, Vascellari M, Marchioro W, Melchiotti E, Mutinelli F. Microchipassociated fibrosarcoma in a cat. Vet Dermatol. 2011;22(6):565-9
Wulf M, Wohlsein P, Aurich JE, Nees M, Baumgärtner W, Aurich C, et al. Readability and histological biocompatibility of microchip transponders in horses. Vet J. 2013;198(1):103-8.
Chang TY, Yadav VG, De Leo S, Mohedas A, Rajalingam B, Chen CL, et al. Cell and protein compatibility of parylene-C surfaces. Langmuir. 2007;23(23):11718-25.
Tomida M, Nakano K, Matsuura S, Kawakami T. Comparative examination of subcutaneous tissue reaction to high molecular materials in medical use. Eur J Med Res. 2011;16(6):249-52
Lee DS, Kim SJ, Kwon EB, Park Ch-W, Jun SM, Choi B, et al. Comparison of in vivo biocompatibilities between parylene-C and polydimethylsiloxane for implantable microelectronic devices. Bulletin of Materials Science. 2013;36(6):1127-32.
Wei L, Lakhtakia A, Roopnariane AP, Ritty TM. Human fibroblast attachment on fibrous parylene-C thin-film substrates. Materials Science and Engineering. 2010;30:1252-9.