2015, Number 1
<< Back Next >>
Rev Biomed 2015; 26 (1)
Regulation of renin release in renovascular hypertension
Guzmán-Hernández EA, Segura-Cobos D, Ibarra-Barajas M
Language: Spanish
References: 36
Page: 33-40
PDF size: 328.58 Kb.
ABSTRACT
Hypertension is a progressive cardiovascular syndrome arising from complex
and interrelated etiologies. Early markers of the
syndrome are often present before blood pressure
elevation is observed. The development of arterial hypertension is associated with functional and
structural cardiac and vascular abnormalities that
damage the heart, kidneys, brain, vasculature, and
other organs, and lead to morbidity and premature death. The kidney and the renin angiotensin
system are the principal mechanisms that underlie
for development of hypertension. Renin is the rate
limiting enzyme for angiotensin II synthesis, and
renin release is regulated by mechanisms as the
intrarenal baroreceptor, the macula densa (MD) and the sympathetic nervous system. The MD releases vasodilator prostaglandins (PG) as PGI2
and PGE2, generated by cyclooxygenase 2, which
induce renin release from juxtaglomerular cells.
In this review, we show interrelated mechanisms between cyclooxygenase 2 of MD and renal angiotensin II.
REFERENCES
Lawes CM, Vander-Hoorn S, Rodgers A. International Society of Hypertension. Global burden of blood-pressure-related disease 2001. Lancet. 2008; 371(9623): 1513–1518.
Instituto Nacional de la Salud Pública. Secretaría de Salud. Encuesta Nacional de Salud y Nutrición. 2012. Resultados Nacionales. México: 113-116.
Stern RH. The new hypertension guidelines. J Clin Hypertens (Greenwich). 2013 Oct; 15(10): 748-51.
Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014 Jun; 124(6): 2341-7.
Ivy JR, Bailey MA. Pressure natriuresis and the renal control of arterial blood pressure. J Physiol. 2014 Sep 15; 592(Pt 18): 3955-67.
Chen D, Coffman TM. The kidney and hypertension: lessons from mouse models. Can J Cardiol. 2012 May; 28(3): 305-10
Powers B, Greene L, Balfe LM. Updates on the treatment of essential hypertension: a summary of AHRQ's comparative effectiveness review of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and direct renin inhibitors. J Manag Care Pharm. 2011 Oct; 17(8 Suppl): S1-14.
Navar LG, Kobori H, Prieto MC, Gonzalez- Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011 Mar; 57(3): 355–362.
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol. 2011 Apr; 11(2): 180-6.
Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012 Jul; 23(7): 1181-9.
Navar LG, Harrison-Bernard LM, Wang CT, Cervenka L, Mitchell KD. Concentrations and actions of intraluminal angiotensin II. J Am Soc Nephrol. 1999 Jan; 10 (Suppl11): S189–95.
Crowley SD, Zhang J, Herrera M, Griffiths R, Ruiz P, Coffman TM. Role of AT1 receptor-mediated salt retention in angiotensin II dependent hypertension. Am J Physiol Renal Physiol. 2011 Nov; 301(5): F1124-30.
Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014 Sep; 86(3): 570-81.
Prieto-Carrasquero MC, Botros FT, Kobori H, Navar LG. Collecting Duct Renin: A major player in Angiotensin II-dependent Hypertension. J Am Soc Hypertens. 2009 Mar-Apr; 3(2): 96-104.
Green T, Rodriguez J, Navar LG. Augmented cyclooxygenase-2 effects on renal function during varying states of angiotensin II. Am J Physiol Renal Physiol. 2010 Nov; 299(5): F954-62.
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Cyclooxygenase pathways. Acta Biochim Pol. 2014 Oct 23. En prensa
Castrop H and Schieß IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol. 2014 Sep; 307: F991–F1002.
Edwards A, Castrop H, Laghmani K, Vallon V, and Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am J Physiol Renal Physiol. 2014 Jul; 307: F137–F146.
Mann B, Hartner A, Jensen BL, Hilgers KF, Höcherl K, Krämer BK, et al. Acute upregulation of COX-2 by renal artery stenosis. Am J Physiol Renal Physiol. 2001 Jan; 280(1): F119-25.
Boshra V, Hamid G, Nader M. Effect of celecoxib on the antihypertensive effect of losartan in a rat model of renovascular hypertension. Can J Physiol Pharmacol. 2011 Feb; 89: 102-107.
Kose F, Besen A, Paydas S, Balal M, Gonlusen G, Inal T, Dogan A, et al. Effects of selective Cox-2 inhibitor, rofecoxib, alone or combination with furosemide on renal functions and renal Cox- 2 expression in rats. Clin Exp Nephrol. 2010 Feb; 14(1): 22-7.
Cheng HF, Harris RC. Cyclooxygenase-2 expression in cultured cortical thick ascending limb of Henle increases in response to decreased extracellular ionic content by both transcriptional and post-transcriptional mechanisms. Role of p38-mediated pathways. J Biol Chem. 2002 Sep; 277(47): 45638-43.
Zhang Z, Sheng H, Shao J, Beauchamp RD and DuBois RN. Posttranscriptional regulation of cyclooxygenase-2 in rat intestinal epithelial cells. Proc Natl Acad Sci USA. 2005 Nov- Dec; 2(6): 523-30.
Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol Renal Physiol. 2009 May; 296(5): F939-46.
Prieto-Carrasquero MC, Botros FT, Pagan J, Kobori H, Seth DM, Casarini DE, et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. Hypertension. 2008 Jun; 51(6): 1590-6.
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev. 2010 Apr; 90(2): 607-73.
Gomez AR and Sequeira-Lopez ML. Who and where is the renal baroreceptor?: the connexin Hypothesis. Kidney Int. 2009 Mar; 75(5): 460–2.
Kim SM, Chen L, Faulhaber-Walter R, Oppermann M, Huang Y, Mizel D, et al. Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergic receptors. Hypertension. 2007 Jul; 50: 103–9.
Kim SM, Briggs JP, Schnermann J. Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway. Clin Exp Nephrol. 2012 Feb; 16(1): 17-24
Poschke A, Kern N, Maruyama T, Pavenstadt H, Narumiya S, Jensen B. The PGE2-EP4 receptor is necessary for stimulation of the renin-angiotensin- aldosterone system in response to low dietary salt intake in vivo. Am J Physiol Renal Physiol. 2012 Nov; 303(10): 1435-1442.
Desch M, Harlander S, Neubauer B, Gerl M, Germain S, Castrop H, et al. cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Arch. 2011 May; 461 (5): 567-77.
Schweda F and Kurtz A. Regulation of Renin Release by Local and Systemic Factors. Rev Physiol Biochem Pharmacol. 2011 May; 161: 1-44.
Friis U, Kirsten Madsen, Stubbe J, Pernille B, .Hansen, Svenningsen & Peter Skøtt O et al Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch - Eur J Physiol. 2013 Jan; 465: 25–37.
McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev. 2011 Jan; 91: 177–219.
Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011 Apr; 22(4): 605-14
Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA. 2009 Mar; 1106(11): 4384-9.