2015, Número 1
<< Anterior Siguiente >>
Rev Biomed 2015; 26 (1)
Regulación de la liberación de renina durante la hipertensión renovascular
Guzmán-Hernández EA, Segura-Cobos D, Ibarra-Barajas M
Idioma: Español
Referencias bibliográficas: 36
Paginas: 33-40
Archivo PDF: 328.58 Kb.
RESUMEN
La hipertensión es un síndrome
cardiovascular progresivo que surge de etiologías complejas e interrelacionadas. Los marcadores
tempranos del síndrome a menudo están presentes antes de que la elevación de la presión sanguínea sea observada. El desarrollo de la hipertensión
arterial se asocia con anomalías cardíacas y
vasculares funcionales y estructurales que dañan
el corazón, los riñones, el cerebro, los vasos,
y otros órganos, y conducen a la morbilidad y
muerte prematura. El sistema renina angiotensina
y los riñones son los principales mecanismos que
subyacen para el desarrollo de la hipertensión.
La renina es la enzima limitante para la síntesis
de la angiotensina II; la liberación de renina está
regulada por mecanismos como el barorreceptor
intrarrenal, la mácula densa (MD) y el sistema
nervioso simpático. Desde la MD son liberadas
prostaglandinas vasodilatadoras (PG) como PGI2
y PGE2, generadas por la ciclooxigenasa 2, que inducen la liberación de renina de las células yuxtaglomerulares. En esta revisión, mostramos
los mecanismos interrelacionados entre la ciclooxigenasa 2 de la MD y la angiotensina II
renal.
REFERENCIAS (EN ESTE ARTÍCULO)
Lawes CM, Vander-Hoorn S, Rodgers A. International Society of Hypertension. Global burden of blood-pressure-related disease 2001. Lancet. 2008; 371(9623): 1513–1518.
Instituto Nacional de la Salud Pública. Secretaría de Salud. Encuesta Nacional de Salud y Nutrición. 2012. Resultados Nacionales. México: 113-116.
Stern RH. The new hypertension guidelines. J Clin Hypertens (Greenwich). 2013 Oct; 15(10): 748-51.
Coffman TM. The inextricable role of the kidney in hypertension. J Clin Invest. 2014 Jun; 124(6): 2341-7.
Ivy JR, Bailey MA. Pressure natriuresis and the renal control of arterial blood pressure. J Physiol. 2014 Sep 15; 592(Pt 18): 3955-67.
Chen D, Coffman TM. The kidney and hypertension: lessons from mouse models. Can J Cardiol. 2012 May; 28(3): 305-10
Powers B, Greene L, Balfe LM. Updates on the treatment of essential hypertension: a summary of AHRQ's comparative effectiveness review of angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and direct renin inhibitors. J Manag Care Pharm. 2011 Oct; 17(8 Suppl): S1-14.
Navar LG, Kobori H, Prieto MC, Gonzalez- Villalobos RA. Intratubular renin-angiotensin system in hypertension. Hypertension. 2011 Mar; 57(3): 355–362.
Navar LG, Prieto MC, Satou R, Kobori H. Intrarenal angiotensin II and its contribution to the genesis of chronic hypertension. Curr Opin Pharmacol. 2011 Apr; 11(2): 180-6.
Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012 Jul; 23(7): 1181-9.
Navar LG, Harrison-Bernard LM, Wang CT, Cervenka L, Mitchell KD. Concentrations and actions of intraluminal angiotensin II. J Am Soc Nephrol. 1999 Jan; 10 (Suppl11): S189–95.
Crowley SD, Zhang J, Herrera M, Griffiths R, Ruiz P, Coffman TM. Role of AT1 receptor-mediated salt retention in angiotensin II dependent hypertension. Am J Physiol Renal Physiol. 2011 Nov; 301(5): F1124-30.
Ohsawa M, Tamura K, Wakui H, Maeda A, Dejima T, Kanaoka T. Deletion of the angiotensin II type 1 receptor-associated protein enhances renal sodium reabsorption and exacerbates angiotensin II-mediated hypertension. Kidney Int. 2014 Sep; 86(3): 570-81.
Prieto-Carrasquero MC, Botros FT, Kobori H, Navar LG. Collecting Duct Renin: A major player in Angiotensin II-dependent Hypertension. J Am Soc Hypertens. 2009 Mar-Apr; 3(2): 96-104.
Green T, Rodriguez J, Navar LG. Augmented cyclooxygenase-2 effects on renal function during varying states of angiotensin II. Am J Physiol Renal Physiol. 2010 Nov; 299(5): F954-62.
Korbecki J, Baranowska-Bosiacka I, Gutowska I, Chlubek D. Cyclooxygenase pathways. Acta Biochim Pol. 2014 Oct 23. En prensa
Castrop H and Schieß IM. Physiology and pathophysiology of the renal Na-K-2Cl cotransporter (NKCC2). Am J Physiol Renal Physiol. 2014 Sep; 307: F991–F1002.
Edwards A, Castrop H, Laghmani K, Vallon V, and Layton AT. Effects of NKCC2 isoform regulation on NaCl transport in thick ascending limb and macula densa: a modeling study. Am J Physiol Renal Physiol. 2014 Jul; 307: F137–F146.
Mann B, Hartner A, Jensen BL, Hilgers KF, Höcherl K, Krämer BK, et al. Acute upregulation of COX-2 by renal artery stenosis. Am J Physiol Renal Physiol. 2001 Jan; 280(1): F119-25.
Boshra V, Hamid G, Nader M. Effect of celecoxib on the antihypertensive effect of losartan in a rat model of renovascular hypertension. Can J Physiol Pharmacol. 2011 Feb; 89: 102-107.
Kose F, Besen A, Paydas S, Balal M, Gonlusen G, Inal T, Dogan A, et al. Effects of selective Cox-2 inhibitor, rofecoxib, alone or combination with furosemide on renal functions and renal Cox- 2 expression in rats. Clin Exp Nephrol. 2010 Feb; 14(1): 22-7.
Cheng HF, Harris RC. Cyclooxygenase-2 expression in cultured cortical thick ascending limb of Henle increases in response to decreased extracellular ionic content by both transcriptional and post-transcriptional mechanisms. Role of p38-mediated pathways. J Biol Chem. 2002 Sep; 277(47): 45638-43.
Zhang Z, Sheng H, Shao J, Beauchamp RD and DuBois RN. Posttranscriptional regulation of cyclooxygenase-2 in rat intestinal epithelial cells. Proc Natl Acad Sci USA. 2005 Nov- Dec; 2(6): 523-30.
Yao J, Oite T, Kitamura M. Gap junctional intercellular communication in the juxtaglomerular apparatus. Am J Physiol Renal Physiol. 2009 May; 296(5): F939-46.
Prieto-Carrasquero MC, Botros FT, Pagan J, Kobori H, Seth DM, Casarini DE, et al. Collecting duct renin is upregulated in both kidneys of 2-kidney, 1-clip Goldblatt hypertensive rats. Hypertension. 2008 Jun; 51(6): 1590-6.
Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of kidney renin. Physiol Rev. 2010 Apr; 90(2): 607-73.
Gomez AR and Sequeira-Lopez ML. Who and where is the renal baroreceptor?: the connexin Hypothesis. Kidney Int. 2009 Mar; 75(5): 460–2.
Kim SM, Chen L, Faulhaber-Walter R, Oppermann M, Huang Y, Mizel D, et al. Regulation of renin secretion and expression in mice deficient in beta1- and beta2-adrenergic receptors. Hypertension. 2007 Jul; 50: 103–9.
Kim SM, Briggs JP, Schnermann J. Convergence of major physiological stimuli for renin release on the Gs-alpha/cyclic adenosine monophosphate signaling pathway. Clin Exp Nephrol. 2012 Feb; 16(1): 17-24
Poschke A, Kern N, Maruyama T, Pavenstadt H, Narumiya S, Jensen B. The PGE2-EP4 receptor is necessary for stimulation of the renin-angiotensin- aldosterone system in response to low dietary salt intake in vivo. Am J Physiol Renal Physiol. 2012 Nov; 303(10): 1435-1442.
Desch M, Harlander S, Neubauer B, Gerl M, Germain S, Castrop H, et al. cAMP target sequences enhCRE and CNRE sense low-salt intake to increase human renin gene expression in vivo. Pflugers Arch. 2011 May; 461 (5): 567-77.
Schweda F and Kurtz A. Regulation of Renin Release by Local and Systemic Factors. Rev Physiol Biochem Pharmacol. 2011 May; 161: 1-44.
Friis U, Kirsten Madsen, Stubbe J, Pernille B, .Hansen, Svenningsen & Peter Skøtt O et al Regulation of renin secretion by renal juxtaglomerular cells. Pflugers Arch - Eur J Physiol. 2013 Jan; 465: 25–37.
McCormick JA, Ellison DH. The WNKs: atypical protein kinases with pleiotropic actions. Physiol Rev. 2011 Jan; 91: 177–219.
Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol. 2011 Apr; 22(4): 605-14
Cristobal P, Pacheco-Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, et al. Angiotensin II signaling increases activity of the renal Na-Cl cotransporter through a WNK4-SPAK-dependent pathway. Proc Natl Acad Sci USA. 2009 Mar; 1106(11): 4384-9.