2014, Number 3
<< Back Next >>
Biotecnol Apl 2014; 31 (3)
Current trends and perspectives in veterinary vaccine production
Domínguez A, Polanco R, Cossío G, Morejón Y, Riquenes Y
Language: English
References: 65
Page: 196-203
PDF size: 350.25 Kb.
ABSTRACT
The dynamism observed in the area of veterinary vaccinology needs to be monitored by the biopharmaceutical industry, thus, to anticipate to the possible changes and take actions that allow it to adapt to the future scenario. On this basis, a study was performed to assess the current status, trends, scientific and technological projections in the production of veterinary vaccines. To this end, a topic search was done on vaccines for poultry, cattle, pigs, rabbits, horses, fish and dogs, in the Scopus database from 2008 to 2012 and further contextualized to early 2014. It was found that veterinary vaccinology is a booming field, with the highest growth in the year 2011 with 18.05 % compared to 2008. As such, the US and China are leading this issue, having a major scientific interest in protein antigens, adjuvants and viral vaccines produced with conventional technologies. The most attended species are birds, pigs and cattle, the first species with 15.21 % of all publications. We conclude that the dominance of the classical vaccine production
technologies will continue despite the advances in genetic engineering and biotechnology. Vaccines produced with modern technologies seem to be, at least for now, less affordable for the producer, and therefore impractical. Similarly, the next few years will be very important for the development and registration of new vaccines obtained by DIVA technology and their diagnostic systems.
REFERENCES
Pastoret PP. Role of vaccination in animal health. Bull Acad Natl Med. 2012;196(3):589-90, 619-20.
López M, Mallorquín P, Pardo R, Vega M. Vacunas de nueva generación. Informe de vigilancia tecnológica. Madrid: Fundación Española para el Desarrollo de la Investigación en Genómica y Proteómica/ Fundación General de la Universidad Autónoma de Madrid; 2004.
Williamson ED, Duchars MG, Kohberger R. Predictive models and correlates of protection for testing biodefence vaccines. Expert Rev Vaccines. 2010;9(5):527-37.
Lee NH, Lee JA, Park SY, Song CS, Choi IS, Lee JB. A review of vaccine development and research for industry animals in Korea. Clin Exp Vaccine Res. 2012;1(1):18-34.
Hu YH, Dang W, Deng T, Sun L. Edwardsiella tarda DnaK: expression, activity, and the basis for the construction of a bivalent live vaccine against E. tarda and Streptococcus iniae. Fish Shellfish Immunol. 2012;32(4):616-20.
Bastardo A, Ravelo C, Castro N, Calheiros J, Romalde JL. Effectiveness of bivalent vaccines against Aeromonas hydrophila and Lactococcus garvieae infections in rainbow trout Oncorhynchus mykiss (Walbaum). Fish Shellfish Immunol. 2012;32(5):756-61.
Hu YH, Deng T, Sun BG, Sun L. Development and efficacy of an attenuated Vibrio harveyi vaccine candidate with cross protectivity against Vibrio alginolyticus. Fish Shellfish Immunol. 2012;32(6):1155-61.
Hamod MA, Nithin MS, Shukur YN, Karunasagar I. Outer membrane protein K as a subunit vaccine against V. anguillarum. Aquaculture. 2012;354-355:107-10.
Li Y, Shi J, Zhong G, Deng G, Tian G, Ge J, et al. Continued evolution of H5N1 influenza viruses in wild birds, domestic poultry, and humans in China from 2004 to 2009. J Virol. 2010;84(17):8389-97.
Luo DY, Xue CY, Cao YC. Research progress and prospect of universal influenza vaccine. Bing Du Xue Bao. 2013;29(6):646-50.
Parker R, Deville S, Dupuis L, Bertrand F, Aucouturier J. Adjuvant formulation for veterinary vaccines: Montanide™ Gel safety profile. Procedia Vaccinol. 2009;1(1):140-7.
von Rosen T, Rangelova D, Nielsen J, Rasmussen TB, Uttenthal A. DIVA vaccine properties of the live chimeric pestivirus strain CP7_E2gif. Vet Microbiol. 2014;170(3-4):224-31.
Biggs PM, Nair V. The long view: 40 years of Marek's disease research and Avian Pathology. Avian Pathol. 2012;41(1):3-9.
Alexander DJ, Aldous EW, Fuller CM. The long view: a selective review of 40 years of Newcastle disease research. Avian Pathol. 2012;41(4):329-35.
León N, Icochea E, Gonzalez R, Perales R. Nivel de protección de una vacuna intermedia contra la enfermedad de Gumboro en aves de postura. Rev Investig Vet Perú. 2012;23(4):477-83.
Mahgoub HA, Bailey M, Kaiser P. An overview of infectious bursal disease. Arch Virol. 2012;157(11):2047-57.
Cook JK, Jackwood M, Jones RC. The long view: 40 years of infectious bronchitis research. Avian Pathol. 2012;41(3):239- 50.
Zhang X, Wu Y, Huang Y, Liu X. Protection conferred by a recombinant Marek's disease virus that expresses the spike protein from infectious bronchitis virus in specific pathogen-free chicken. Virol J. 2012;9:85-91.
Zhao K, Chen G, Shi XM, Gao TT, Li W, Zhao Y, et al. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One. 2012;7(12):e53314.
Perozo F, Villegas P, Mavárez Y, Fernández R, Cruz J. Eficacia de un herpesvirus de pavo recombinante expresando la proteína vp2 del virus de la enfermedad de Gumboro ante un desafío experimental. Rev Cient 2010;20(2):132-7.
Britton P, Armesto M, Cavanagh D, Keep S. Modification of the avian coronavirus infectious bronchitis virus for vaccine development. Bioeng Bugs. 2012;3(2):114-9.
Zhai SL, Chen SN, Xu ZH, Tang MH, Wang FG, Li XJ, et al. Porcine circovirus type 2 in China: an update on and insights to its prevalence and control. Virol J. 2014;11:88.
Yang K, Li W, Niu H, Yan W, Liu X, Wang Y, et al. Efficacy of single dose of an inactivated porcine circovirus type 2 (PCV2) whole-virus vaccine with oil adjuvant in piglets. Acta Vet Scand. 2012;54:67.
Lee JA, Kwon B, Osorio FA, Pattnaik AK, Lee NH, Lee SW, et al. Protective humoral immune response induced by an inactivated porcine reproductive and respiratory syndrome virus expressing the hypo-glycosylated glycoprotein 5. Vaccine. 2014;32(29):3617-22.
Dortmans JC, Loeffen WL, Weerdmeester K, van der Poel WH, de Bruin MG. Efficacy of intradermally administrated E2 subunit vaccines in reducing horizontal transmission of classical swine fever virus. Vaccine. 2008;26(9):1235-42.
Blome S, Gabriel C, Beer M. Possibilities and limitations in veterinary vaccine development using the example of classical swine fever. Berl Munch Tierarztl Wochenschr. 2013;126(11-12):481-90.
Ren JQ, Sun WC, Lu HJ, Wen SB, Jing J, Yan FL, et al. Construction and immunogenicity of a DNA vaccine coexpressing GP3 and GP5 of genotype-I porcine reproductive and respiratory syndrome virus. BMC Vet Res. 2014;10(1):128.
Wang C, Sun Y, Qiu H. Progress in new-type vaccines against classical swine fever. Sheng Wu Gong Cheng Xue Bao. 2013;29(7):880-90.
Beer M, Reimann I, Hoffmann B, Depner K. Novel marker vaccines against classical swine fever. Vaccine. 2007;25(30):5665-70.
Tignon M, Kulcsar G, Haegeman A, Barna T, Fabian K, Levai R, et al. Classical swine fever: comparison of oronasal immunisation with CP7E2alf marker and C-strain vaccines in domestic pigs. Vet Microbiol. 2010;142(1-2):59-68.
Opriessnig T, Gomes-Neto JC, Hemann M, Shen HG, Beach NM, Huang Y, et al. An experimental live chimeric porcine circovirus 1-2a vaccine decreases porcine circovirus 2b viremia when administered intramuscularly or orally in a porcine circovirus 2b and porcine reproductive and respiratory syndrome virus dualchallenge model. Microbiol Immunol. 2011;55(12):863-73.
Feng H, Blanco G, Segales J, Sibila M. Can Porcine circovirus type 2 (PCV2) infection be eradicated by mass vaccination? Vet Microbiol. 2014;172(1-2):92-9.
Huang YW, Meng XJ. Novel strategies and approaches to develop the next generation of vaccines against porcine reproductive and respiratory syndrome virus (PRRSV). Virus Res. 2010;154(1-2):141-9.
Renukaradhya GJ, Dwivedi V, Manickam C, Binjawadagi B, Benfield D. Mucosal vaccines to prevent porcine reproductive and respiratory syndrome: a new perspective. Anim Health Res Rev. 2012;13(1):21-37.
Wang CH, Yuan J, Qin HY, Luo Y, Cong X, Li Y, et al. A novel gE-deleted pseudorabies virus (PRV) provides rapid and complete protection from lethal challenge with the PRV variant emerging in Bartha-K61-vaccinated swine population in China. Vaccine. 2014;32(27):3379-85.
Kong H, Zhang K, Liu Y, Shang Y, Wu B, Liu X. Attenuated live vaccine (Bartha- K16) caused pseudorabies (Aujeszky's disease) in sheep. Vet Res Commun. 2013;37(4):329-32.
Almazan C, Moreno-Cantu O, Moreno- Cid JA, Galindo RC, Canales M, Villar M, et al. Control of tick infestations in cattle vaccinated with bacterial membranes containing surface-exposed tick protective antigens. Vaccine. 2012;30(2):265-72.
Carreon D, de la Lastra JM, Almazan C, Canales M, Ruiz-Fons F, Boadella M, et al. Vaccination with BM86, subolesin and akirin protective antigens for the control of tick infestations in white tailed deer and red deer. Vaccine. 2012;30(2):273-9.
Guerrero FD, Miller RJ, Perez de Leon AA. Cattle tick vaccines: many candidate antigens, but will a commercially viable product emerge? Int J Parasitol. 2012;42(5):421-7.
Nagendrakumar SB, Srinivasan VA, Madhanmohan M, Yuvaraj S, Parida S, Di Nardo A, et al. Evaluation of cross-protection between O1 Manisa and O1 Campos in cattle vaccinated with foot-and-mouth disease virus vaccine incorporating different payloads of inactivated O1 Manisa antigen. Vaccine. 2011;29(10):1906-12.
Gonzalez AM, Arnaiz I, Yus E, Eiras C, Sanjuan M, Dieguez FJ. Evaluation of long-term antibody responses to two inactivated bovine viral diarrhoea virus (BVDV) vaccines. Vet J. 2014;199(3):424-8.
Charleston B. Eradicating bovine viral diarrhoea virus. Vet Rec. 2013;172(25): 659-60.
Zientara S, Sanchez-Vizcaino JM. Control of bluetongue in Europe. Vet Microbiol. 2013;165(1-2):33-7.
Hasler B, Howe KS, Di Labio E, Schwermer H, Stark KD. Economic evaluation of the surveillance and intervention programme for bluetongue virus serotype 8 in Switzerland. Prev Vet Med. 2012;103(2- 3):93-111.
Batten CA, Edwards L, Oura CA. Evaluation of the humoral immune responses in adult cattle and sheep, 4 and 2.5 years post-vaccination with a bluetongue serotype 8 inactivated vaccine. Vaccine. 2013;31(37):3783-5.
Jamal SM, Belsham GJ. Foot-andmouth disease: past, present and future. Vet Res. 2013;44:116.
Smith MT, Bennett AM, Grubman MJ, Bundy BC. Foot-and-mouth disease: technical and political challenges to eradication. Vaccine. 2014;32(31):3902-8.
Yang B, Yang F, Wang SH, Zhang Y, Cao WJ, Yin H, et al. Advances in reverse genetics-based vaccines of foot and mouth disease. Bing Du Xue Bao. 2014;30(2):213-20.
Fu Y, Cao Y, Sun P, Bao H, Bai X, Li P, et al. Development of a dot immunoblot method for differentiation of animals infected with foot-and-mouth disease virus from vaccinated animals using non-structural proteins expressed prokaryotically. J Virol Methods. 2011;171(1):234-40.
Uddowla S, Hollister J, Pacheco JM, Rodriguez LL, Rieder E. A safe foot-andmouth disease vaccine platform with two negative markers for differentiating infected from vaccinated animals. J Virol. 2012;86(21):11675-85.
Palomares RA, Marley SM, Givens MD, Gallardo RA, Brock KV. Bovine viral diarrhea virus fetal persistent infection after immunization with a contaminated modified-live virus vaccine. Theriogenology. 2013;79(8):1184-95.
Alvarez M, Donate J, Makoschey B. Antibody responses against non-structural protein 3 of bovine viral diarrhoea virus in milk and serum samples from animals immunised with an inactivated vaccine. Vet J. 2012;191(3):371-6.
Oura CA, Edwards L, Batten CA. Evaluation of the humoral immune response in adult dairy cattle three years after vaccination with a bluetongue serotype 8 inactivated vaccine. Vaccine. 2012;30(2):112-5.
Calvo-Pinilla E, Castillo-Olivares J, Jabbar T, Ortego J, de la Poza F, Marin-Lopez A. Recombinant vaccines against bluetongue virus. Virus Res. 2014;182:78-86.
Biswas S, Bandyopadhyay S, Dimri U, Patra PH. Bovine herpesvirus-1 (BHV-1) - a re-emerging concern in livestock: a revisit to its biology, epidemiology, diagnosis, and prophylaxis. Vet Q. 2013;33(2):68-81.
Kumar P, Ayalew LE, Godson DL, Gaba A, Babiuk LA, Tikoo SK. Mucosal immunization of calves with recombinant bovine adenovirus- 3 coexpressing truncated form of bovine herpesvirus-1 gD and bovine IL-6. Vaccine. 2014;32(26):3300-6.
Mackenzie-Dyck S, Kovacs-Nolan J, Snider M, Babiuk LA, van Drunen Littel-van den Hurk S. Inclusion of the bovine neutrophil Beta-defensin 3 with glycoprotein D of bovine herpesvirus 1 in a DNA vaccine modulates immune responses of mice and cattle. Clin Vaccine Immunol. 2014;21(4):463-77.
El-Kholy AA, Rady DI, Abdou ER, Elseafy MM, Abdelrahman KA, Soliman H. Construction, characterization and immunogenicity of a glycoprotein E negative bovine herpesvirus-1.1 Egyptian strain "Abu-Hammad". J Virol Methods. 2013;194(1-2):74-81.
Kortekaas J. One Health approach to Rift Valley fever vaccine development. Antiviral Res. 2014;106:24-32.
Wilson WC, Bawa B, Drolet BS, Lehiy C, Faburay B, Jasperson DC, et al. Evaluation of lamb and calf responses to Rift Valley fever MP-12 vaccination. Vet Microbiol. 2014;172(1-2):44-50.
Indran SV, Ikegami T. Novel approaches to develop Rift Valley fever vaccines. Front Cell Infect Microbiol. 2012;2:131.
Bird BH, Maartens LH, Campbell S, Erasmus BJ, Erickson BR, Dodd KA, et al. Rift Valley fever virus vaccine lacking the NSs and NSm genes is safe, nonteratogenic, and confers protection from viremia, pyrexia, and abortion following challenge in adult and pregnant sheep. J Virol. 2011;85(24):12901-9.
Lihoradova O, Ikegami T. Countermeasure development for Rift Valley fever: deletion, modification or targeting of major virulence factor. Future Virol. 2014;9(1):27-39.
Kortekaas J, Antonis AF, Kant J, Vloet RP, Vogel A, Oreshkova N, et al. Efficacy of three candidate Rift Valley fever vaccines in sheep. Vaccine. 2012;30(23):3423-9.
Weingartl HM, Nfon CK, Zhang S, Marszal P, Wilson WC, Morrill JC, et al. Efficacy of a recombinant Rift Valley fever virus MP-12 with NSm deletion as a vaccine candidate in sheep. Vaccine. 2014;32(20):2345-9.