2014, Número 3
Siguiente >>
Biotecnol Apl 2014; 31 (3)
Aspectos evolutivos, fisiológicos y biotecnológicos de la ferroquelatasa y hemo en plantas superiores
Ortega-Rodés P, Grimm B, Ortega E
Idioma: Ingles.
Referencias bibliográficas: 105
Paginas: 176-186
Archivo PDF: 407.05 Kb.
RESUMEN
El grupo hemo, cofactor para proteínas esenciales, es sintetizado a partir de la inserción de Fe
2+ en el anillo de protoporfirina por la enzima ferroquelatasa (FC). A pesar de que FC está bien caracterizada, existen aún incógnitas principales acerca de la regulación de la vía biosintética y la localización de la enzima en las plantas. Este artículo provee una revisión detallada acerca de las investigaciones sobre la función y el metabolismo del hemo en las plantas; incluye además información sobre las características únicas del metabolismo del hemo. Resumimos los conocimientos sobre la expresión, mecanismos de reacción, localización y filogenia de la FC. Incrementar el contenido de hierro hemo en los alimentos de origen vegetal es un gran reto biotecnológico para mejorar la ingesta de hierro en la población; el hierro hemo es de 5-10 veces más absorbido que el hierro no hemo. En esta revisión nosotros sugerimos modificaciones biotecnológicas potenciales en el metabolismo del hemo en las plantas para incrementar la capacidad de los cultivos de resistir los estreses biótico y abiótico y mejorar las cualidades nutricionales de las plantas como fuente de hierro para la dieta.
REFERENCIAS (EN ESTE ARTÍCULO)
De Greef W, Delon R, De Block M, Leemans J, Botterman J. Evaluation of herbicide resistance in transgenic crops under field conditions. Nature Biotechnol. 1989;7:61-4.
Reguera M, Peleg Z, Abdel-Tawab YM, Tumimbang EB, Delatorre CA, Blumwald E. Stress-induced cytokinin synthesis increases drought tolerance through the coordinated regulation of carbon and nitrogen assimilation in rice. Plant Physiol. 2013;163(4):1609-22.
Penna S. Building stress tolerance through over-producing trehalose in transgenic plants. Trends Plant Sci. 2003;8(8):355-7.
Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA. 2002;99(25):15898-903.
Lermontova I, Grimm B. Overexpression of plastidic protoporphyrinogen IX oxidase leads to resistance to the diphenyl- ether herbicide acifluorfen. Plant Physiol. 2000;122(1):75-84.
Tanaka R, Tanaka A. Tetrapyrrole biosynthesis in higher plants. Annu Rev Plant Biol. 2007;58:321-46.
Murgia I, Arosio P, Tarantino D, Soave C. Biofortification for combating 'hidden hunger' for iron. Trends Plant Sci. 2012;17(1):47-55.
Cook JD. Adaptation in iron metabolism. Am J Clin Nutr. 1990;51:301-8.
Wu AC, Lesperance L, Bernstein H. Screening for iron deficiency. Pediatr Rev. 2002;23(5):171-8.
Jain A, Connolly EL. Mitochondrial iron transport and homeostasis in plants. Frontiers Plant Sci. 2013;4:348.
Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, et al. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 2003;164(3):371-8.
Tanaka R, Kobayashi K, Masuda T. Tetrapyrrole metabolism in Arabidopsis thaliana. Arabidopsis Book. 2011;9:e0145.
Papenbrock J, Mock HP, Kruse E, Grimm B. Expression studies in tetrapyrrole biosynthesis: inverse maxima of magnesium chelatase and ferrochelatase activity during cyclic photoperiods. Planta. 1999;208(2):264-73.
Papenbrock J, Grimm B. Regulatory network of tetrapyrrole biosynthesis--studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta. 2001;213(5):667-81.
Cornah JE, Roper JM, Pal Singh D, Smith AG. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J. 2002;362(Pt 2):423-32.
Matringe M, Camadro JM, Joyard J, Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem. 1994;269(21):15010-5.
Guo R, Luo ML, Weistein JD. Magnesium- chelatase from developing Pea leaves. Characterization of a Soluble Extract from Chloroplasts and Resolution into Three Required Protein Fractions. Plant Physiol. 1998;116(2):605-15.
Papenbrock J, Pfundel E, Mock HP, Grimm B. Decreased and increased expression of the subunit CHL I diminishes Mg chelatase activity and reduces chlorophyll synthesis in transgenic tobacco plants. Plant J. 2000;22(2):155-64.
Mohanty S, Grimm B, Tripathy BC. Light and dark modulation of chlorophyll biosynthetic genes in response to temperature. Planta. 2006;224(3):692-9.
Adhikari ND, Orler R, Chory J, Froehlich JE, Larkin RM. Porphyrins promote the association of GENOMES UNCOUPLED 4 and a Mg-chelatase subunit with chloroplast membranes. J Biol Chem. 2009;284(37):24783-96.
Larkin RM, Alonso JM, Ecker JR, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science. 2003;299(5608):902-6.
Roper JM, Smith AG. Molecular localisation of ferrochelatase in higher plant chloroplasts. Eur J Biochem. 1997;246(1):32-7.
Suzuki T, Masuda T, Singh DP, Tan FC, Tsuchiya T, Shimada H, et al. Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber: their difference in phylogeny, gene expression, and localization. J Biol Chem. 2002;227:4731-7.
Joyard J, Ferro M, Masselon C, Seigneurin- Berny D, Salvi D, Garin J, et al. Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant. 2009;2(6):1154-80.
Nakayama M, Masuda T, Bando T, Yamagata H, Ohta H, Takamiya K. Cloning and expression of the soybean chlH gene encoding a subunit of Mg-chelatase and localization of the Mg2+ concentration-dependent ChlH protein within the chloroplast. Plant Cell Physiol. 1998;39(3):275-84.
Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, et al. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. Plant J. 2001;28(1):41-50.
Schatz G, Dobberstein B. Common principles of protein translocation across membranes. Science. 1996;271(5255):1519-26.
Rusch SL, Kendall DA. Protein transport via amino-terminal targeting sequences: common themes in diverse systems. Mol Membr Biol. 1995;12(4):295-307.
Smith AG, Santana MA, Wallace-Cook AD, Roper JM, Labbe-Bois R. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem. 1994;269(18):13405-13.
Chow KS, Singh DP, Roper JM, Smith AG. A single precursor protein for ferrochelatase- I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem. 1997;272(44):27565-71.
Chow KS, Singh DP, Walker AR, Smith AG. Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. Plant J. 1998;15(4):531-41.
Lister R, Chew O, Rudhe C, Lee MN, Whelan J. Arabidopsis thaliana ferrochelatase- I and -II are not imported into Arabidopsis mitochondria. FEBS Lett. 2001;506(3):291-5.
Dimitrijevic L, Puppo A, Trinchant JC, Rigaud J. Ferrochelatase activities and heme contents in purified mitochondria from soybean roots and root nodules. Plant Sci. 1989;134(5):642-4.
Jacobs JM, Jacobs NJ. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis Purification and partial characterization of the enzyme from barley organelles. Biochemistry J. 1987;244(1):219-24.
Lermontova I, Kruse E, Mock HP, Grimm B. Cloning and characterization of a plastidal and a mitochondrial isoform of tobacco protoporphyrinogen IX oxidase. Proc Natl Acad Sci USA. 1997;94(16):8895-900.
Watanabe N, Che FS, Iwano M, Takayama S, Yoshida S, Isogai A. Dual targeting of spinach protoporphyrinogen oxidase II to mitochondria and chloroplasts by alternative use of two in-frame initiation codons. J Biol Chem. 2001;276(23):20474-81.
Woodson JD, Perez-Ruiz JM, Chory J. Heme synthesis by plastid ferrochelatase I regulates nuclear gene expression in plants. Curr Biol. 2011;21(10):897-903.
Singh DP, Cornah JE, Hadingham S, Smith AG. Expression analysis of the two ferrochelatase genes in Arabidopsis in different tissues and under stress conditions reveals their different roles in haem biosynthesis. Plant Mol Biol. 2002;50(4- 5):773-88.
Kang K, Lee K, Park S, Lee S, Kim YS, Back K. Overexpression of rice ferrochelatase I and II leads to increased susceptibility to oxyfluorfen herbicide in transgenic rice. J Plant Biol. 2010;53(4):291-6.
Emanuelsson O, Nielsen H, Brunak S, von Heijne G. Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol. 2000;300(4):1005-16.
Claros MG, Vincens P. Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem. 1996;241(3):779-86.
Bannai H, Tamada Y, Maruyama O, Nakai K, Miyano S. Extensive feature detection of N-terminal protein sorting signals. Bioinformatics. 2002;18(2):298-305.
Hoglund A, Donnes P, Blum T, Adolph HW, Kohlbacher O. MultiLoc: prediction of protein subcellular localization using N-terminal targeting sequences, sequence motifs and amino acid composition. Bioinformatics. 2006;22(10):1158-65.
Whitcombe DM, Carter NP, Albertson DG, Smith SJ, Rhodes DA, Cox TM. Assignment of the human ferrochelatase gene (FECH) and a locus for protoporphyria to chromosome 18q22. Genomics. 1991;11(4):1152-4.
Watanabe S, Hanaoka M, Ohba Y, Ono T, Ohnuma M, Yoshikawa H, et al. Mitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae. Plant Cell Physiol. 2013;54(8):1289-95.
Camadro JM, Labbe P. Purification and properties of ferrochelatase from the yeast Saccharomyces cerevisiae. Evidence for a precursor form of the protein. J Biol Chem. 1988;263(24):11675-82.
Horie C, Suzuki H, Sakaguchi M, Mihara K. Targeting and assembly of mitochondrial tail-anchored protein Tom5 to the TOM complex depend on a signal distinct from that of tail-anchored proteins dispersed in the membrane. J Biol Chem. 2003;278(42):41462-71.
Hansson M, Hederstedt L. Purification and characterisation of a water-soluble ferrochelatase from Bacillus subtilis. Eur J Biochem. 1994;220(1):201-8.
Ferreira GC, Franco R, Lloyd SG, Moura I, Moura JJ, Huynh BH. Structure and function of ferrochelatase. J Bioenerg Biomembr. 1995;27(2):221-9.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305(3):567-80.
Cserzo M, Eisenhaber F, Eisenhaber B, Simon I. TM or not TM: transmembrane protein prediction with low false positive rate using DAS-TMfilter. Bioinformatics. 2004;20(1):136-7.
Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17(9):849-50.
Claros MG, von Heijne G. TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci. 1994;10(6):685-6
Sobotka R, Tichy M, Wilde A, Hunter CN. Functional assignments for the carboxyl- terminal domains of the ferrochelatase from Synechocystis PCC 6803: the CAB domain plays a regulatory role, and region II is essential for catalysis. Plant Physiol. 2011;155(4):1735-47.
Sobotka R, McLean S, Zuberova M, Hunter CN, Tichy M. The C-terminal extension of ferrochelatase is critical for enzyme activity and for functioning of the tetrapyrrole pathway in Synechocystis strain PCC 6803. J Bacteriol. 2008;190(6):2086-95.
Taketani S, Tanaka-Yoshioka A, Masaki R, Tashiro Y, Tokunaga R. Association of ferrochelatase with Complex I in bovine heart mitochondria. Biochim Biophys Acta. 1986;883(2):277-83.
Al-Karadaghi S, Hansson M, Nikonov S, Jonsson B, Hederstedt L. Crystal structure of ferrochelatase: the terminal enzyme in heme biosynthesis. Structure. 1997;5(11):1501-10.
Thomas J, Weinstein JD. Measurement of heme efflux and heme content in isolated developing chloroplasts. Plant Physiol. 1990;94(3):1414-23.
Daley DO, Whelan J. Why genes persist in organelle genomes. Genome Biol. 2005;6(5):110.
Sato S, Nakamura Y, Kaneko T, Asamizu E, Tabata S. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 1999;6(5):283-90.
Jung HS, Chory J. Signaling between chloroplasts and the nucleus: can a systems biology approach bring clarity to a complex and highly regulated pathway? Plant Physiology. 2010;152(2):453-9.
Millar AH, Whelan J, Soole KL, Day DA. Organization and regulation of mitochondrial respiration in plants. Annual Rev Plant Biol. 2011;62:79-104.
Kleine T, Maier UG, Leister D. DNA transfer from organelles to the nucleus: the idiosyncratic genetics of endosymbiosis. Annual Rev Plant Biol. 2009;60:115-38.
Mense SM, Zhang L. Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res. 2006;16(8):681-92.
Nott A, Jung HS, Koussevitzky S, Chory J. Plastid-to-nucleus retrograde signaling. Annual Rev Plant Biol. 2006;57:739-59.
Kobayashi Y, Kanesaki Y, Tanaka A, Kuroiwa H, Kuroiwa T, Tanaka K. Tetrapyrrole signal as a cell-cycle coordinator from organelle to nuclear DNA replication in plant cells. Proc Natl Acad Sci USA. 2009;106(3):803-7.
Mochizuki N, Tanaka R, Tanaka A, Masuda T, Nagatani A. The steady-state level of Mg-protoporphyrin IX is not a determinant of plastid-to-nucleus signaling in Arabidopsis. Proc Natl Acad Sci USA. 2008;105(39):15184-9.
Moulin M, McCormac AC, Terry MJ, Smith AG. Tetrapyrrole profiling in Arabidopsis seedlings reveals that retrograde plastid nuclear signaling is not due to Mg-protoporphyrin IX accumulation. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(39):15178-83.
Padmanaban G, Venkateswar V, Rangarajan PN. Haem as a multifunctional regulator. Trends Biochem Sci. 1989;14(12):492-6.
Grover A, Pareek A, Singla SL, Minhas D, Katiyar S, Ghawana S, et al. Engineering crops for tolerance against abiotic stress through gene manipulation. Current Science. 1998;75(7):689-96.
Avin-Wittenberg T, Tzin V, Angelovici R, Less H, Galili G. Deciphering energy- associated gene networks operating in the response of Arabidopsis plants to stress and nutritional cues. Plant J. 2012;70(6):954-66.
Pasqualini S, Piccioni C, Reale L, Ederli L, Della Torre G, Ferranti F. Ozone-induced cell death in tobacco cultivar Bel W3 plants. The role of programmed cell death in lesion formation. Plant Physiol. 2003;133(3):1122-34.
Nagai S, Koide M, Takahashi S, Kikuta A, Aono M, Sasaki-Sekimoto Y, et al. Induction of isoforms of tetrapyrrole biosynthetic enzymes, AtHEMA2 and AtFC1, under stress conditions and their physiological functions in Arabidopsis. Plant Physiol. 2007;144(2):1039-51.
Marschner H. Mineral nutrition of higher plants. 2nd ed. London: Academic Press; 1995.
Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL. Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature. 2001;409(6818):346-9.
Le Jean M, Schikora A, Mari S, Briat JF, Curie C. A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J. 2005;44(5):769-82.
Lee S, Kim YS, Jeon US, Kim YK, Schjoerring JK, An G. Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification. Mol Cells. 2012;33(3):269-75.
Hider RC, Kong X. Iron speciation in the cytosol: an overview. Dalton Trans. 2013;42(9):3220-9.
Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K. PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell. 2007;19(3):986-1006.
Jeong J, Cohu C, Kerkeb L, Pilon M, Connolly EL, Guerinot ML. Chloroplast Fe(III) chelate reductase activity is essential for seedling viability under iron limiting conditions. Proc Natl Acad Sci USA. 2008;105(30):10619-24.
Jeong J, Connolly EL. Iron uptake mechanisms in plants: Functions of the FRO family of ferric reductases. Plant Sci. 2009;176(6):709-14.
Shingles R, North M, McCarty RE. Ferrous ion transport across chloroplast inner envelope membranes. Plant Physiol. 2002;128(3):1022-30.
Bashir K, Ishimaru Y, Shimo H, Nagasaka S, Fujimoto M, Takanashi H, et al. The rice mitochondrial iron transporter is essential for plant growth. Nature Commu. 2011;2:322.
Maliandi MV, Busi MV, Turowski VR, Leaden L, Araya A, Gomez-Casati DF. The mitochondrial protein frataxin is essential for heme biosynthesis in plants. FEBS J. 2011;278(3):470-81.
Briat JF. Roles of ferritin in plants. J Plant Nutr. 1996;19(8-9):1331-42.
Ravet K, Touraine B, Boucherez J, Briat JF, Gaymard F, Cellier F. Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 2009;57:400-12.
Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta. 2009;1790(7):589-99.
Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275(3):161-203.
Tarantino D, Casagrande F, Soave C, Murgia I. Knocking out of the mitochondrial AtFer4 ferritin does not alter response of Arabidopsis plants to abiotic stresses. J Plant Physiol. 2010;167(6):453-60.
Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F. Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnol. 1999;17(3):282-6.
Kheir W, Ismail G, El-Nour FA, Tawfik T, Hammad D. Assessment of the efficiency of duckweed (Lemna gibba) in waste water treatment. International J Agric Biol. 2007;9(5):681-7.
Teixeira S, Vieira MN, Espinha Marques J, Pereira R. Bioremediation of an iron-rich mine effluent by Lemna minor. Int J Phytoremediation. 2014;16(7-12):1228-40.
Lee S, An G. Over-expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 2009;32(4):408-16.
Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, et al. Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 2010;62(3):379-90.
Margulis L. Symbiosis and evolution. Sci Am. 1971;225:48-57.
Obornik M, Green BR. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol. 2005;22(12):2343-53.
Weeden NF. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J Mol Evol. 1981;17(3):133-9.
Gould SB, Waller RF, McFadden GI. Plastid evolution. Annual Rev Plant Biol. 2008;59:491- 517.
Keeling PJ. Diversity and evolutionary history of plastids and their host. American Journal of Botany. 2004;91(10):1481-93.
Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ. Plant systematics. A phylogenetic approach. 3rd ed. Sunderland, Massachusetts: Sinauer Associates; 2008.
Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2011;39(Database issue):D32-7.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25(24):4876-82.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-9.
Zimmermann MB, Hurrell RF. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr Opin Biotechnol. 2002;13(2):142-5.
Briat JF, Curie C, Gaymard F. Iron utilization and metabolism in plants. Curr Opin Plant Biol. 2007;10:276-82.