2015, Number 1
<< Back
Rev Cuba Endoc 2015; 26 (1)
Molecular markers for thyroid cancer
Marrero RMT, Sinconegui GB, Cruz CA
Language: Spanish
References: 45
Page: 93-104
PDF size: 105.20 Kb.
ABSTRACT
The importance of the study of the thyroid nodule lies in excluding the possibility of
a malignant lesion because the majority of lesions are benign but there is a malignancy risk of 5 to 10%. Most of them are well differentiated carcinomas
originating in the follicular epithelium. In spite of the fact that the majority are
benign lesions, distinguishing them from carcinomas is crucial to treatment and
adequate follow-up. Fine-needle biopsy allows making the diagnosis in most of
cases. However, this method is restricted, particularly when diagnosing follicular
lesions. In an effort to improve the diagnostic accuracy of biopsy and to provide
new diagnosing criteria, a number of molecular markers have been put forward,
some of which has wide range of approval whereas others still awaits to be
validated for further implementation. This article presented an updated review of
molecular markers with higher number of evidence, more accessible and potentially
usable from a methodological viewpoint for diagnosis of the thyroid nodule before
surgery.
REFERENCES
González AR, Restrepo GL, Alzate MC, Vélez A, Gutiérrez RJ. Nódulo tiroideo, enfoque y manejo. Latreia. 2013;26:197-206.
Pineda P, Osorio F. Cáncer diferenciado de tiroides, de la biología molecular a la clínica. Rev Hosp Clín Univ Chile. 2011;22:205-10.
Yassa L, Cibas ES, Benson CB, Frates MC, Doubilet PM, Gawande AA, et al. Longterm assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation. Cancer. 2007;111:508-16.
Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol. 2006;30:216-22.
Nikiforov YE, Ohori NP, Hodak SP, Carty SE, LeBeau SO, Ferris RL, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96:3390-7.
Xinying Li, Zhiming W, Jianming L, Cane T, Chaojun Duanand CL. Proteomic analysis of differentially expressed proteins in normal human thyroid cells transfected with PPFP. Endocrine-Related Cancer. 2012;19:681-94.
Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta. 2010;1802:396-405.
Lovly CM, Dahlman KB, Fohn LE, Su Z, Dias-Santagata D, Hicks DJ, et al. Routine multiplex mutational profiling of melanomas enables enrollment in genotype-driven therapeutic trials. PLoS One. 2012;7:353-9.
Zafon C, Obliols G. Vía de señalización dependiente de la proteincinasa de activación mitogénica en el carcinoma papilar de tiroides. De las bases moleculares a la práctica clínica. Endocrinol Nutr. 2009;56:176-86.
Fernandez J, Piccin O, Sciascia S, Cavicchi O, Repaci A, Vicennati V, et al. Clinical Significance of BRAF Mutation in Thyroid Papillary Cancer. Otolaryngol Head Neck Surg. 2013;148:919-25.
Elisei R, Viola D, Torregrossa L, Giannini R, Romei C, Ugolini C, et al. The BRAFV600E mutation is an independent, poor prognostic factorfor the outcome of patients with low-risk intrathyroid papillary thyroid carcinoma: single-institution results from a large cohort study. J Clin Endocrinol Metab. 2012;97:4390-8.
Kim SK, Hwang TS, Yoo YB, Han HS, Kim DL, Song KH, et al. Surgical results of thyroid nodules according to a management guideline based on the Braf V600E mutation status. J Clin Endocrinol Metab. 2011;96:658-64.
O’Neill CJ, Bullock M, Chou A, Sidhu SB, Delbridge LW, Robinson BG, et al. BRAF V600E mutation is associated with an increased risk of nodal recurrence requiring reoperative surgery in patient with papillary thyroid cancer. Surgery. 2010;148:1139-45.
Basolo F, Torregrossa L, Giannini R, Miccoli M, Lupi C, Sensi E, et al. Correlation between the BRAF V600E mutation and tumor invasiveness in papillary thyroid carcinomas smaller than 20 millimeters: analysis of 1060 Cases. J Clin Endocrinol Metab. 2010;95:4197-205.
Romitti M, Ceolin L, Siqueira DR, Ferreira CV, Wajner SM, Maia AL. Signaling pathways in follicular cell-derived thyroid carcinomas. Int J Oncol. 2013;42:19-20.
Schulten HJ, Salama S, Al-Ahmadi A, Al-Mansouri Z, Mirza Z, Al-Ghamdi K, et al. Comprehensive survey of HRAS, KRAS, and NRAS mutations in proliferative thyroid lesions from an ethnically diverse population. Anticancer Res. 2013;33:4779-84.
Howell GM, Hodak SP, Yip L. RAS Mutations in Thyroid Cancer. Oncologist. 2013;18:926-32.
Hershman JM. Mutations of the RAS Oncogene are Found in Follicular Variant Papillary Thyroid Carcinoma. Clin Thyroidol. 2013;25:170-1.
Fukahori M, Yoshida A, Hayashi H, Yoshihara M, Matsukuma S, Sakuma Y, et al. The associations between RAS mutations and clinical characteristics in follicular thyroid tumors: new insights from a single center and a large patient cohort. Thyroid. 2012;22:683-9.
McFadden DG, Vernon A, Santiago PM, Martinez-McFaline R, Bhutkar A, Crowley DM, et al. P53 constrains progression to anaplastic thyroid carcinoma in a Brafmutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci USA. 2014;109:61-70.
Hasbek Z, Turgut B, Erselcan T. P53 antibody: is it an indicator of differentiated thyroid cancer? Ann Nucl Med. 2014;281:42-6.
Shahedian B, Shi Y, Zou M, Farid NR. Thyroid carcinoma is characterized by genomic instability: evidence from p53 mutations. Mol Genet Metab. 2001;72:155-63.
Debolina Ray, Matthew T. Balmer and Susannah Gal. The Functionality of p53 in Thyroid Cancer. Medical Oncology. 2011;29(2):734-41.
Rogounovitch I, Saenko A, Ashizawa K, Sedliarou A, Namba H, Abrosimov Y, et al. TP53 codon 72 polymorphism in radiation-associated human papillary thyroid cancer. Oncology Reports. 2006;15:949-56.
Dobashi Y, Sakamoto A, Sugimura H, Mernyei M, Mori M, Oyama T. Over expression of p53 as a possible prognostic factor in human thyroid carcinoma. Am J Surg Pathol. 1993;17:375-81.
Messina L, Sanfilippo M, Vella V, Pandini G, Vigneri P, Nicolosi L, et al. Reactivation of p53 mutants by prima-1 [corrected] in thyroid cancer cells. Int J Cancer. 2012;15;130:2259-70.
Leeman-Neill RJ, Brenner AV, Little MP, Bogdanova TI, Hatch M, Zurnadzy LY, et al. RET/PTC and PAX8/PPARG chromosomal rearrangements in post-Chernobyl thyroid cancer and their asociation with iodine-131 radiation dose and other characteristics. Cancer. 2013;119:1792-9.
Elisei R, Romei C, Cosci B, Agate L, Bottici V, Molinaro E, et al. RET genetic screening in patients with medullary thyroid cancer and their relatives: experience with 807 individuals at one center. J Clin Endocrinol Metab. 2007;92:4725-9.
Krampitz GW, Norton JA. RET gene mutations (genotype and phenotype) of multiple endocrine neoplasia type 2 and familial medullary thyroid carcinoma. Cancer. 2014;120(13):1920-31.
Elisei R, Cosci B, Romei C, Bottici V, Renzini G, Molinaro E, et al. Prognostic significance of somatic RET oncogene mutations in sporadic medullary thyroid cancer: a 10-year follow up study. J Clin Endocrinol Metab. 2007;87:1941-6.
Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005;12:245-62.
Melillo R, Santoro M, Vecchio G. Differential diagnosis of thyroid nodules using fine-needle aspiration cytology and oncogene mutation screening: are we ready? Medicine Reports. 2010;2(62):1-4.
Falchetti A, Franceschelli F, Marini F, Tanini A, Brandi M. Thyroid Cancer: current molecular perspectives. J Oncol. 2010;35:167-9.
Koenig RJ. Detection of the PAX8-PPARG Fusion Protein in Thyroid Tumors. Clinical Chemistry. 2010;56(3):331-3.
Norman Eberhardt L, Stefan Grebe KG, McIver B, Honey Reddi V. The Role of the PAX8/PPARG Fusion Oncogene in the Pathogenesis of Follicular Thyroid Cancer. Mol Cell Endocrinol. 2010;321:50-6.
Au AY, McBride C, Wilhelm KG Jr., Koenig RJ, Speller B, Cheung L, et al. PAX8- peroxisome proliferator-activated receptor gamma (PPARG) disrupts normal PAX8 or PPARG transcriptional function and stimulates follicular thyroid cell growth. Endocrinology. 2006;147:367-76.
Yip L, Kebebew E, Milas M, Carty E, Fahey J, Parangi S, et al. Summary statement: Utility of molecular marker testing in thyroid cancer. Surgery. 2010;148:1313-5.
Xing J, Liu R, Xing M, Trink B. The Braf T1799 a mutation confers sensitivity of thyroid cancer cells to the BrafV600E inhibitor PLX4032 (rG7204) Biochemical and Biophysical Research Communications. 2011;404:958-62.
McLeod D. Current concepts and future directions in differentiated thyroid cancer. Clin Biochem Rev. 2010;31:9-19.
Williams M. Integration of biomarkers including molecular targeted therapies in head and neck cancer. Head Neck Pathol. 2010;4:62-9.
Moses W, Weng J, Sansano I. Molecular testing for somatic mutations improves the accuracy of thyroid fine-needle aspiration biopsy. World J Surg. 2010;34:2589-94.
Ruggeri R, Campennì A, Baldari S, Trimarchi F, Trovato M. What is new on thyroid cancer biomarkers. Biom Insights. 2008;3:237-52.
Giusti F, Falchetti A, Franceschelli F, Marini F, Tanini A, Brandi M. Thyroid Cancer: current molecular perspectives. J Oncol. 2010;35:167-9.
Kebebew E, Weng J, Bauer J, Ranvier G, Clark H, Duh Y, et al. The prevalence and prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466-71.
Chiganer G, Ghersevich S, Sánchez A, Novelli JL. Biología Molecular en el cáncer de tiroides. Rev Med Rosario. 2011;77:147-56.