2014, Number 3
<< Back Next >>
Rev Cubana Med Trop 2014; 66 (3)
In vitro activity against Leishmania and human skin permeation of miltefosine ultradeformable liposomes
Paola HI, Martinetti MJA, Escobar RP
Language: Spanish
References: 30
Page: 370-385
PDF size: 511.39 Kb.
ABSTRACT
Introduction: miltefosine ultradeformable liposomes (MIL-LUD) are an option for the topical treatment of cutaneous leishmaniasis penetrating the skin layers to the
dermis where the parasite inhabits.
Objective: to design MIL-LUD and determine their
in vitro activity against
L. (Viannia) panamensis and
L. (V.) braziliensis and to determine human skin permeation.
Methods: MIL-LUD, phosphatidylcholine liposomes (MIL-LConv) and fluorescent MIL-LUD (MIL-LUD-Fluo) were prepared by lipid film rehydration method. They were physicochemically characterized to determine drug release in semisynthetic membrane, retention in skin layers and permeation on human skin membranes. Cytotoxicity in THP-1 was determined by the MTT colorimetric test and activity in promastigotes and intracellular amastigotes by microscopic counting.
Results: the size, the polydispersion index, the Zeta potential and phospholipid content were 100.7 nm, 0.147, -12.0mV and 53.24mM, respectively for MIL-LUD.
MIL flow through the semisynthetic membrane was greater with MIL-LUD than MILfree treatment. MIL-LUD treatment induced lower MIL accumulation in the stratum corneum and increased permeation than MIL free treatment. The MIL-LUD and MILConv maintained MIL activity in parasites and cells. The MIL-LUD was more toxic to cells than MIL-Conv and more active against intracellular amastigotes of
L. (V.) braziliensis.
Conclusion: prepared LUD -MIL retained the anti-leishmanial activity of the MIL and allowed the compound release in human skin and membranes. Testing of experimental cutaneous leishmaniasis models to evaluate the activity of these formulations are urgently needed.
REFERENCES
Organización Panamericana de la Salud (OPS). Pequeñas picaduras grandes amenazas [Citado 1 de septiembre del 2014]. Disponible en: http://www.paho.org/world-health-day-2014/wp-content/uploads/2014/02/ Leishmaniasis-esp.pdf
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.
Monge-Maillo B, López-Vélez R. Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs. 2013;73(17):1889-920.
Dorlo TP, van Thiel PP, Huitema AD, Keizer RJ, de Vries HJ, Beijnen JH, et al. Pharmacokinetics of miltefosine in old world cutaneous leishmaniasis patients. Antimicrob Agents Chemother. 2008;52(8):2855-60.
Soto J, Soto P. Oral miltefosine to treat leishmaniasis. Biomedica. 2006;26(Suppl 1):207-17.
Vincent IM, Weidt S, Rivas L, Burgess K, Smith TK, Ouellette M. Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. Int J Parasitol Drugs Drug Resist. 2013;4(1):20-7.
Berman J, Bryceson AD, Croft S, Engel J, Gutteridge W, Karbwang J, et al. Miltefosine: issues to be addressed in the future. Trans R Soc Trop Med Hyg. 2006;100(Suppl 1):S41-4.
Seifert K, Pérez-Victoria FJ, Stettler M, Sánchez-Cañete MP, Castanys S, Gamarro F, et al. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents. 2007;30(3):229-35.
Rai K, Cuypers B, Bhattarai NR, Uranw S, Berg M, Ostyn B, et al. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. MBio. 2013;4(5):e00611-13.
Schmidt-Ott R, Klenner T, Overath P, Aebischer T. Topical treatment with hexadecylphosphocholine (Miltex) efficiently reduces parasite burden in experimental cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1999;93(1):85-90.
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226-32.
Hornillos V, Carrillo E, Rivas L, Amat-Guerri F, Acuña AU. Synthesis of BODIPYlabeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine. Bioorg Med Chem Lett. 2008;18(24):6336-9.
Hernández IP, Montanari J, Valdivieso W, Morilla MJ, Romero EL, Escobar P. In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. J Photochem Photobiol B. 2012;117:157-63
Kaufmann-Kolle P, Berger MR, Unger C, Eibl H. Systemic administration of alkylphosphocholines. Erucylphosphocholine and liposomal hexadecylphosphocholine. Adv Exp Med Biol. 1996;416:165-8.
Barlett GR. Phosphorous assay in column chromatography. J. Biol. Chem. 1959;234:466-68.
Primo FL, Bentley MV, Tedesco AC. Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment. J Nanosci Nanotechnol. 2008;8(1):340-7.
Blanco MC, Escobar P, Leal SM, Bahsas A, Cobo J, Nogueras M, et al. Synthesis of novel polysubstituted (2SR,4RS)-2-heteroaryltetrahydro-1,4-epoxy-1- benzazepines and cis-2-heteroaryl-4-hydroxytetrahydro-1H-1-benzazepines as antiparasitic agents. Eur J Med Chem. 2014;86C:291-309.
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727-37.
Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, et al. Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis. 2011;11(4):322-5.
Wortmann G, Zapor M, Ressner R, Fraser S, Hartzell J, Pierson J, et al. Lipsosomal amphotericin B for treatment of cutaneous leishmaniasis. Am J Trop Med Hyg. 2010;83(5):1028-33.
Montanari J, Vera M, Mensi E, Morilla M, Romero E. Nanoberries for topical delivery of antioxidants. J Cosmet Sci. 2013;64(6):469-81.
Montanari J, Maidana C, Esteva MI, Salomon C, Morilla MJ, Romero EL. Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. Control Release. 2010;147(3):368-76.
Dey T, Anam K, Afrin F, Ali N. Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother. 2000;44(6):1739-42.
Yu Q, Wang Z, Li P, Yang Q. The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm. 2013; 39(4):587-92.
Dong L, Witkowski CM, Craig MM, Greenwade MM, Joseph KL. Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells. Nanoscale Res Lett. 2009;4(12):1517-23.
Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, et al. Enhancing effect of surfactants on fexofenadine. HCl transport across the human nasal epithelial cell monolayer. Int J Pharm. 2007;330(1-2):23-31.
Arndt D, Zeisig R, Eue I, Sternberg B, Fichtner I. Antineoplastic activity of sterically stabilized alkylphosphocholine liposomes in human breast carcinomas. Breast Cancer Res Treat. 1997;43(3):237-46.
Papagiannaros A, Bories C, Demetzos C, Loiseau PM. Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations. Biomed Pharmacother. 2005;59(10):545-50.
Patel RP, Patel H, Baria AH. Formulation and evaluation of liposomes of ketoconazole. Int J Drug Delivery Tech. 2009;1(1):16-23.
Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LA. In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm. 2004;30(3):289-96.