2014, Número 3
<< Anterior Siguiente >>
Rev Cubana Med Trop 2014; 66 (3)
Actividad in vitro contra Leishmania y permeación en piel humana de liposomas ultradeformables de miltefosina
Paola HI, Martinetti MJA, Escobar RP
Idioma: Español
Referencias bibliográficas: 30
Paginas: 370-385
Archivo PDF: 511.39 Kb.
RESUMEN
Introducción: los liposomas ultradeformables de miltefosina (LUD-MIL) constituyen una opción para el tratamiento tópico en leishmaniasis cutánea
penetrando los estratos de la piel hasta la dermis, sitio donde habita el parásito.
Objetivo: diseñar LUD-MIL y determinar su actividad contra
L. (Viannia) panamensis y
L. (V.) braziliensis y la permeación en piel humana.
Métodos: los LUD-MIL, liposomas convencionales de fosfatidilcolina (LConv) y LUDMIL-fluorescente (LUD-MIL-Fluo) fueron preparados por el método de rehidratación
de película lipídica. Se caracterizaron fisicoquímicamente y se determinaron: la liberación en membrana semisintéticas, la retención en las capas de la piel y la permeación en piel humana. La citotoxicidad en THP-1 fue determinada por el ensayo colorimétrico de MTT y la actividad en promastigotes y amastigotes intracelulares por recuento microscópico.
Resultados: el tamaño, índice de polidispersión, potencial Z y concentración de fosfolípidos de los LUD-MIL fue de 100,7 nm, 0,147, -12,0 mV y 53,24 mM respectivamente. El flujo de MIL a través de la membrana fue mayor con LUD-MIL que con MIL-libre. El tratamiento con LUD-MIL indujo menor acumulación de la MIL en el estrato corneo y mayor permeación que el tratamiento con MIL libre. Los LUD-MIL y los LConv-MIL mantuvieron la actividad de la MIL en los parásitos y
células. Los LUD-MIL fueron más tóxicos para las células que los LConv y la MIL y más activos en amastigotes intracelulares de
L. (V.) braziliensis.
Conclusión: los LUD-MIL preparados conservaron la actividad anti-Leishmania de la MIL y permitieron la liberación del compuesto en membranas y piel humana.
Ensayos en modelos experimentales de leishmaniasis cutánea para evaluar la actividad de estas formulaciones son urgentes de realizar.
REFERENCIAS (EN ESTE ARTÍCULO)
Organización Panamericana de la Salud (OPS). Pequeñas picaduras grandes amenazas [Citado 1 de septiembre del 2014]. Disponible en: http://www.paho.org/world-health-day-2014/wp-content/uploads/2014/02/ Leishmaniasis-esp.pdf
Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, et al. Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 2012;7(5):e35671.
Monge-Maillo B, López-Vélez R. Therapeutic options for old world cutaneous leishmaniasis and new world cutaneous and mucocutaneous leishmaniasis. Drugs. 2013;73(17):1889-920.
Dorlo TP, van Thiel PP, Huitema AD, Keizer RJ, de Vries HJ, Beijnen JH, et al. Pharmacokinetics of miltefosine in old world cutaneous leishmaniasis patients. Antimicrob Agents Chemother. 2008;52(8):2855-60.
Soto J, Soto P. Oral miltefosine to treat leishmaniasis. Biomedica. 2006;26(Suppl 1):207-17.
Vincent IM, Weidt S, Rivas L, Burgess K, Smith TK, Ouellette M. Untargeted metabolomic analysis of miltefosine action in Leishmania infantum reveals changes to the internal lipid metabolism. Int J Parasitol Drugs Drug Resist. 2013;4(1):20-7.
Berman J, Bryceson AD, Croft S, Engel J, Gutteridge W, Karbwang J, et al. Miltefosine: issues to be addressed in the future. Trans R Soc Trop Med Hyg. 2006;100(Suppl 1):S41-4.
Seifert K, Pérez-Victoria FJ, Stettler M, Sánchez-Cañete MP, Castanys S, Gamarro F, et al. Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. Int J Antimicrob Agents. 2007;30(3):229-35.
Rai K, Cuypers B, Bhattarai NR, Uranw S, Berg M, Ostyn B, et al. Relapse after treatment with miltefosine for visceral leishmaniasis is associated with increased infectivity of the infecting Leishmania donovani strain. MBio. 2013;4(5):e00611-13.
Schmidt-Ott R, Klenner T, Overath P, Aebischer T. Topical treatment with hexadecylphosphocholine (Miltex) efficiently reduces parasite burden in experimental cutaneous leishmaniasis. Trans R Soc Trop Med Hyg. 1999;93(1):85-90.
Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226-32.
Hornillos V, Carrillo E, Rivas L, Amat-Guerri F, Acuña AU. Synthesis of BODIPYlabeled alkylphosphocholines with leishmanicidal activity, as fluorescent analogues of miltefosine. Bioorg Med Chem Lett. 2008;18(24):6336-9.
Hernández IP, Montanari J, Valdivieso W, Morilla MJ, Romero EL, Escobar P. In vitro phototoxicity of ultradeformable liposomes containing chloroaluminum phthalocyanine against New World Leishmania species. J Photochem Photobiol B. 2012;117:157-63
Kaufmann-Kolle P, Berger MR, Unger C, Eibl H. Systemic administration of alkylphosphocholines. Erucylphosphocholine and liposomal hexadecylphosphocholine. Adv Exp Med Biol. 1996;416:165-8.
Barlett GR. Phosphorous assay in column chromatography. J. Biol. Chem. 1959;234:466-68.
Primo FL, Bentley MV, Tedesco AC. Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment. J Nanosci Nanotechnol. 2008;8(1):340-7.
Blanco MC, Escobar P, Leal SM, Bahsas A, Cobo J, Nogueras M, et al. Synthesis of novel polysubstituted (2SR,4RS)-2-heteroaryltetrahydro-1,4-epoxy-1- benzazepines and cis-2-heteroaryl-4-hydroxytetrahydro-1H-1-benzazepines as antiparasitic agents. Eur J Med Chem. 2014;86C:291-309.
Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727-37.
Matlashewski G, Arana B, Kroeger A, Battacharya S, Sundar S, Das P, et al. Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis. 2011;11(4):322-5.
Wortmann G, Zapor M, Ressner R, Fraser S, Hartzell J, Pierson J, et al. Lipsosomal amphotericin B for treatment of cutaneous leishmaniasis. Am J Trop Med Hyg. 2010;83(5):1028-33.
Montanari J, Vera M, Mensi E, Morilla M, Romero E. Nanoberries for topical delivery of antioxidants. J Cosmet Sci. 2013;64(6):469-81.
Montanari J, Maidana C, Esteva MI, Salomon C, Morilla MJ, Romero EL. Sunlight triggered photodynamic ultradeformable liposomes against Leishmania braziliensis are also leishmanicidal in the dark. Control Release. 2010;147(3):368-76.
Dey T, Anam K, Afrin F, Ali N. Antileishmanial activities of stearylamine-bearing liposomes. Antimicrob Agents Chemother. 2000;44(6):1739-42.
Yu Q, Wang Z, Li P, Yang Q. The effect of various absorption enhancers on tight junction in the human intestinal Caco-2 cell line. Drug Dev Ind Pharm. 2013; 39(4):587-92.
Dong L, Witkowski CM, Craig MM, Greenwade MM, Joseph KL. Cytotoxicity effects of different surfactant molecules conjugated to carbon nanotubes on human astrocytoma cells. Nanoscale Res Lett. 2009;4(12):1517-23.
Lin H, Gebhardt M, Bian S, Kwon KA, Shim CK, Chung SJ, et al. Enhancing effect of surfactants on fexofenadine. HCl transport across the human nasal epithelial cell monolayer. Int J Pharm. 2007;330(1-2):23-31.
Arndt D, Zeisig R, Eue I, Sternberg B, Fichtner I. Antineoplastic activity of sterically stabilized alkylphosphocholine liposomes in human breast carcinomas. Breast Cancer Res Treat. 1997;43(3):237-46.
Papagiannaros A, Bories C, Demetzos C, Loiseau PM. Antileishmanial and trypanocidal activities of new miltefosine liposomal formulations. Biomed Pharmacother. 2005;59(10):545-50.
Patel RP, Patel H, Baria AH. Formulation and evaluation of liposomes of ketoconazole. Int J Drug Delivery Tech. 2009;1(1):16-23.
Ferreira LS, Ramaldes GA, Nunan EA, Ferreira LA. In vitro skin permeation and retention of paromomycin from liposomes for topical treatment of the cutaneous leishmaniasis. Drug Dev Ind Pharm. 2004;30(3):289-96.