2014, Number S1
<< Back Next >>
Rev Invest Clin 2014; 66 (S1)
Technological advances in neurorehabilitation
Gutiérrez-Martínez J, Núñez-Gaona MA, Carrillo-Mora P
Language: Spanish
References: 96
Page: 8-23
PDF size: 375.70 Kb.
ABSTRACT
Neurological rehabilitation arose as formal method in the
60’s, for the therapeutic treatment of patients with stroke or
spinal cord injury, which develop severe sequelae that affect
their motor and sensory abilities. Although the Central
Nervous System has plasticity mechanisms for spontaneous
recovery, a high percentage of patients should receive
specialized therapies to regain motor function, such as
Constraint Induced Movement Therapy or Upright physical
Therapy. The neurorehabilitation has undergone drastic
changes over the last two decades due to the incorporation of
computer and robotic electronic devices, designed to produce
positive changes in cortical excitability of the cerebral
hemisphere damaged and so to improve neuroplasticity.
Among equipment, we can mention those for electrotherapy
devices, apparatus for transcranial magnetic stimulation,
the robotic lower limb orthoses, robot for upper limb
training, systems for functional electrical stimulation,
neuroprosthesis and brain computer interfaces. These
devices have caused controversy because of its application
and benefits reported in the literature. The aim of Neurorehabilitation
technologies is to take advantage of the functional
neuromuscular structures preserved, and they
compensate or re-learn the functions that previously made
the damaged areas. The purpose of this article is to mention
some clinical applications and benefits that these
technologies offer to patients with neuronal injury.
REFERENCES
Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380: 2095-128.
INEGI. Censo de Población y Vivienda 2010. INEGI, 2010. Disponible en: www inegi.org.mx http://www inegi.org.mx/sistemas/ sisept/default.aspx?t=mdis04&s=est&c=277[Consultado: diciembre 2012).
Patel MD, Tilling K, Lawrence E, Rudd AG, Wolfe CDA, Mc- Kevitt C. Relationships between long-term stroke disability, handicap and health-related quality of life. Age & Ageing 2006; 35: 273-9.
Selassie AW, Zaloshnja E, Langlois JA, Miller T, Jones P, Steiner C. Incidence of Long-term Disability Following Traumatic Brain Injury Hospitalization, United States, 2003. J Head Trauma Rehab 2008; 23:123-31.
Mcallister TW. Neurobehavioral sequelae of traumatic brain injury: evaluation and management. World Psychiatry 2008; 7: 3-10. Gutiérrez-Martínez J, et al. Avances tecnológicos en neurorrehabilitación. Rev Invest Clin 2014; 66 (Supl. 1): s8-s23 s21
Barnes MP. Principles of neurological rehabilitation. J Neurol Neurosurg Psychiatry 2003; 74(Suppl. IV): iv3-iv7.
Jang SH. Review of motor recovery in patients with traumatic brain injury. NeuroRehabilitation 2009; 24(4): 349-53.
Johansson SS. Current trends in stroke rehabilitation. A review with focus on brain plasticity. Acta Neurol Scand 2011; 123: 147-59.
Duffau H. Brain plasticity: From pathophysiological mechanisms to therapeutic applications. J Clin Neurosci 2006; 13: 885-97.
Michaelsen SM, Levin MF. Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. Stroke 2004; 35: 1914-9.
Leenders AGM, Sheng ZH. Modulation of neurotransmitter release by the second messenger-activated protein kinases: implications for presynaptic plasticity. Pharmacology and Therapeutics 2005; 105: 69-84.
Dancause N, Barbay S, Frost S, Plautz E, Chen D, Zoubina E, Stowe A, et al. Extensive cortical rewiring after brain injury. J Neuroscience 2005; 25: 10167-79.
Gordon J. A top-down model for neurologic rehabilitation. In: Linking movement science and intervention, Proceedings of the III Step Conference, American Physical Therapy Association, 2005; p. 30-3.
Johnston MV. Clinical disorders of brain plasticity. Brain Develop 2004; 26: 73-80.
Nudo R. Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. J Rehabilitation Medicine 2003; 41: 7-10.
Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ, et al. Harnessing neuroplasticity for clinical applications. Brain 2011; 134: 1591-609.
Ziemann U, Meintzschel F, Korchounov A, Ilic TV. Pharmacological modulation of plasticity in the human motor cortex. Neural Repair 2006; 20: 243-51.
Barbay S, Nudo R. The effects of amphetamine on recovery of function in animal models of cerebral injury: A critical appraisal. NeuroRehabilitation 2009; 25: 5-17.
Pleger B, Ragert P. Pharmacological support of neurorehabilitation. Curr Drug Therapy 2006; 1: 17-22.
Dimitrijeviæ MR. Head injuries and restorative neurology. Scand J Rehab Med 1988; 17(Suppl.): 9-13.
Sinkjær T, Popoviã DB. Neurorehabilitation Technologies-Present and Future Possibilities. Neurorehabilitation 2009; 25: 1-3.
Kunkel A, Kopp B, Muller G, Villringer K, Villringer A, Taub E, Flor H. Constraint-induced movement therapy for motor recovery in chronic stroke patients. Archives of Physical Medicine and Rehabilitation 1999; 80: 624-8.
Charles J, Gordon A. A Critical Review of Constraint-Induced Movement Therapy and Forced Use in Children with Hemiplegia. Neural Plasticity 2005; 12(2-3): 245-72.
Tabu E, Morris D. Constraint-induced movement therapy to enhance recovery after stroke. Current Atherosclerosis Reports 2001; 3(4): 279-86.
Tarkka I, Kononen M. Methods to improve constraint-induced movement therapy. NeuroRehabilitation 2009; 25: 59-68.
Hee S, Kyeong Y, Eum S, Paik NJ. Prediction of Motor Function Recovery after Subcortical Stroke: Case Series of Activation PET and TMS Studies. Ann Rehabil Med 2012; 36(4): 501-11.
Díaz L, Pinel A, Gueita J. Terapia de movimiento inducido por restricción del lado sano. ¿Alternativa en pacientes post-ictus? Fisioterapia 2011; 33(6): 273-7.
Teasell R, Viana R. Barriers to the Implementation of Constraint- Induced Movement Therapy into Practice. Topics in Stroke Rehabilitation 2012; 19(2): 104-14.
Hendrie W. Stand and Deliver. How the use of an Oswestry Standing Frame improved sitting balance and function in a case of secondary progressive MS. Way Ahead 2005; 9(2): 6-7.
Shields R, Dudley-Javoroski S. Monitoring standing wheelchair use after spinal cord injury: A case report. Disability and Rehabilitation 2005; 27(3): 142-6.
Chelvarajah R. Orthostatic hypotension following spinal cord injury: Impact on the use of standing apparatus. Neuro Rehabilitation 2009; 24: 237-42.
Luther MS, Krewer C, Müller F, Koenig E. Comparison of orthostatic reactions of patients still unconscious within the first three months of brain injury on a tilt table with and without integrated stepping. A prospective, randomized crossover pilot trial. Clin Rehabil 2008; 22: 1034.
Müller F. New Technologic Approach to Minimizing Immobilization Effects of Patients with Brain Injury. Brain Injury 2007; 21(7): 763-7.
Colombo G, Schreier R, Plewa H, Rupp R. Novel Tilt Table with integrated robotic stepping mechanism: Design Principles and Clinical Application. Proceedings of the IEEE 9th International Conference on Rehabilitation Robotics, 2005; p.220-30.
Van Peppen RP, Kwakkel G, Wood-Dauphinee S, Hendriks HJ, Van der Wees PJ, Dekker J. The impact of physical therapy on functional outcomes after stroke: what’s the evidence? Clinical Rehabilitation 2004; 18(8): 833-62.
States RA, Pappas E, Salem Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database of Systematic Reviews 2009, Issue 3 [Art. No.:CD006075].
Moseley AM, Stark A, Cameron ID, Pollock A. Treadmill training and body weight support for walking after stroke. Cochrane Database of Systematic Reviews 2005, Issue 4 [Art. No.:CD002840].
Hesse S, Schmidt H, Werner C, Bardeleben A. Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Current Opinion in Neurology 2003; 16(6): 705-10.
Colombo G, Joerg M, Schreier R, Dietz V. Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development 2000; 37(6): 693-700.
Bernhardt M, Lutz P, Frey M, Laubacher N, Colombo G, Riener R. Physiological Treadmill Training with the 8-DOF Rehabilitation Robot LOKOMAT. BMT 2005. Disponible en: http:// www lsr.ei.tum.de/fileadmin/backup/BernhardtLutzFrey2005 [Consultado Dic 2012].
Schmidt H, Hesse S, Bernhardt R, Krüger J. HapticWalker – a novel haptic foot device. ACM Transactions on Applied Perception 2005; 2(2): 166-80.
Massachusetts Institute of Technology. MIT develops Anklebot for stroke patients. Disponible en: http://web.edu/newsoffice/ 2005/ strokerobot.html [Consultado 20 diciembre 2012].
Veneman, Kruidhof R, Van der Helm FCT, Van der Kooy H. Design of a Series Elastic- and Bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training robots. Proceedings of the ICOOR 2005.
Krebs HI, Hogan N, Aisen ML, Volpe BT. Robot-aided neurorehabilitation. IEEE Trans Rehabil Eng 1998; 6(1): 75-87.
Popoviã D, Sinkjær T. Control of Movement for the Physically Disabled. 2003 Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Denmark.
Schulthesis M, Rizzo A. The application of virtual reality technology in rehabilitation. Rehabil Psychology 2001; 46: 296-311.
Holden MK. Environment training: a new tool for neurorehabilitation:review. Neurology Report 2002; 26: 62-71.
Baram Y, Miller A. Virtual reality cues for improvement of gait in patients with multiple sclerosis. Neurology 2006; 66(2): 178-81.
Albani G, Pignatti R, Bertella L, Priano L, Semenza C, Molinari E, Mauro A. Common daily activities in the virtual environment: a preliminary study in Parkinsonian patients. Neurol Sci 2002; 23(Suppl. 2): S49-S50.
Kim NG, Yoo CK, Im JJ. A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Trans Rehabil Eng 1999; 7(4): 482-5.
Fung J, Maulouin F, McFadyen BJ, Comeau F, Lamontagne A, Chapdelaine S, Richards CL. Locomotor rehabilitation in a complex virtual environment. Conf Proc IEEE Eng Med Biol Soc 2004; 7: 4859-61.
Piron L, Cenni F, Tonin P, Dam M. Virtual Reality as an assessment tool for arm motor deficits after brain lesions. Stud Health Technol Inform 2001; 68(1): 1-5.
Steele E, Grimmer K, Thomas B, Mulley B, Fulton I, Hoffman H. Virtual reality as a pediatric pain modulation technique: a case study. Cyberpsychol Behav 2003; 6(6): 633-8.
Alon G, et al. Electrotherapeutic Terminology in Physical Therapy; Section on Clinical Electrophysiology. Alexandria, VA: American Physical Therapy Association; 2005.
Chae J, Sheffler L, Knutson J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top Stroke Rehabil 2008; 15: 412-26.
Glinsky J, Harvey L, Van Es. Efficacy of electrical stimulation to increase muscle strength in people with neurological conditions: a systematic review. Physiother Res Int 2007; 3: 383-93.
Alireza S, Firoozabadi SMP, Torkaman G, Fathollahi Y. The effect of vertebral column tripolar electrical stimulation with various intensities on soleus and gastrocnemius H-reflex and Mh Wave recruitment curve. Physiology and Pharmacology 2009; 13(2): 229-43.
Nidhi B, Narkeesh A, Khurana S. Effect of Spinal Stimulation on Monosynaptic Reflex by Medium Frequency Current. Journal of Exercise Science and Physiotherapy 2011; 7(2): 89-94.
Liebano R, Rakel B, Vance C, Walsh D, Sluka K. An Investigation of the Development of Analgesic Tolerance to Transcutaneous Electrical Nerve Stimulation (TENS) in Humans. Pain 2011; 152(2): 335-42.
DeSantana J, Walsh D, Vance C, Rakel B, Sluka K. Effectiveness of Transcutaneous Electrical Nerve Stimulation for Treatment of Hyperalgesia and Pain. Curr Rheumatol Rep 2008; 10(6): 492-9.
Mannheimer C, Lund S, Carlsson CA. The effect of transcutaneous electrical nerve stimulation (TENS) on joint pain in patients with rheumatoid arthritis. Scand J Rheumatol 1978; 7: 13-6.
Wall PD, Sweet WH. Temporary abolition of pain in man. Science 1967; 155: 108-9.
Melzack R, Wall PD. Pain mechanisms: a new theory. Science 1965; 150 (3699): 971-9.
Gersh MR, Wolf S. Applications of Transcutaneous Electrical Nerve Stimulation in the Management of Patients with Pain. Physical Therapy 1985; 65(3): 314-36.
Goats GC. Physiotherapy treatment modalities. Interferential current therapy. Br J Sp Med 1990; 24(2): 87-92.
Adel RV, Luykx RHJ. Low and medium Frequency Electrotherapy. Implox. Enraf Nonius; 2005.
Ward A. Electrical Stimulation Using Kilohertz-Frequency Alternating Current. Physical Therapy 2009; 89(2): 181-90.
Prentice W. Rehabilitation techniques for Sports Medicine and Athletic Training. 4th Ed. Mc Graw Hill; 2004.
Takahashi K, Suyama T, Takakur Y, Hirabayashi S, Tsuzuki N, Zhong-Shi L. Efectos Clínicos de un Tratamiento Diatérmico por Aplicación de Transferencia Eléctrica Capacitiva en Pacientes con Cervicobraquialgia. Reference Review 1999; 1-10.
Takahashi K, Suyama T, Onodera M, et al. Clinical Effects of Capacitive Electric Transfer Hyperthermia Therapy for Lumbago. The Journal of Physical Medicine 1999; 11: 45-51.
Bütefisch CM, Wessling M, Netz J, Seitz RJ, Hömberg V. Relationship Between Interhemispheric Inhibition and Motor Cortex Excitability in Subacute Stroke Patients. Neurorehabil Neural Repair 2008; 22(1): 4-21.
Berweck S, Walther M, Brodbeck V, Wagner N, Koerte I, Henschel V, et al. Abnormal motor cortex excitability in congenital stroke. Pediatr Res 2008; 63(1): 84-8.
Li X, Tenebäck CC, Nahas Z, Kozel FA, Large C, Cohn J, et al. Interleaved transcranial magnetic stimulation/functional MRI confirms that lamotrigine inhibits cortical excitability in healthy young men. Neuropsychopharmacology 2004; 29(7): 1395-407.
Popoviæ DB. Advances in the use of electrical stimulation for the recovery of motor function. Prog Brain Res 2011; 194: 215-22.
Tarkka I, Pitkänen K, Popovic D, Vanninen R, Könönen M. Functional Electrical Therapy for Hemiparesis Alleviates Disability and Enhances Neuroplasticity. Tohoku J Exp Med 2011; 225(1): 71-6.
Popovic MB, Popovic DB, Sinkjær T, Stefanovic A, Schwirtlich L. Clinical Evaluation of Functional Electrical Therapy in Acute Hemiplegic Subjects. J Rehabil Res 2003; 40: 443-53.
Popovic DB, Popovic MB, Sinkjær T, Stefanovic A, Schwirtlich L. Therapy of paretic arm in hemiplegic subjects augmented with a neural prosthesis: a cross-over study. Can J Physiol Pharmacol 2004; 82: 749-56.
Popovic M, Keller T, Pappas I, Dietz V, Morari M. Surface-Stimulation Technology for Grasping and Walking Neuroprostheses. IEEE Engineering in Medicine and Biology Magazine 2001; 20: 82-93.
Popoviç MB, Popoviç DB, Sinkjær T, Stefanovic A, Schwirtlich L. Restitution of reaching and grasping promoted by functional electrical therapy. Artificial Organs 2002; 26(3): 271-5.
Bhadra N, Chae J. Implantable neuroprosthetic technology. NeuroRehabilitation 2009; 25: 69-83.
Peckham PH, Kilgore KL, Keith MW, Bryden A, Crago PE, et al. An advanced neuroprosthesis for restoration of hand and upper arm control employing an implantable controller. J Hand Surg 2002; 27A: 265-76.
Peckham PH, Knutson JS. Functional electrical stimulation for neuromuscular applications. Annu Rev Biomed Eng 2005; 7: 327-60.
Hoffmann U, Vesin JM, Ebrahimi T. Recent advances in braincomputer interfaces. IEEE International Workshop on Multimedia Signal Processing 2007; 17.
Birbaumer N. Breaking the silence: Brain-Computer interfaces (BCI) for communication and motor control. Psychophysiology 2006; 43: 517-32.
Pfurtscheller G, Solis-Escalante T, Ortner R, Linorther P, Müller- Putz GR. Self-Paced Operation of an SSVEP Based Orthosis With and Without an Imagery-Based “Brain Swith”: A feasibility Study Towards a Hybrid BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2010; 18(4): 409-14.
Ortner R, Allison B, Gaggl H, Pfurtscheller G. An SSVEP BCI to Control a Hand Orthosis for Persons With Tetraplegia. IEEE Transactions on Neural Systems and Rehabilitation Engineering 2011; 19(1): 1-5.
Pfurtscheller G, Müller-Putz GR, Rupp JPR. EEG-Based Asynchronous BCI Controls Functional Electrical Stimulation in a ´ ´ ´ ´ ´ Gutiérrez-Martínez J, et al. Avances tecnológicos en neurorrehabilitación. Rev Invest Clin 2014; 66 (Supl. 1): s8-s23 s23 Tetraplegic Patient. Journal on Advances in Signal Processing 2005; 19: 3152-5.
Van der Lee JH. Constraint-induced therapy for stroke: more of the same or something completely different? Current Opinion in Neurology 2001; 14(6): 741-4.
Sonde L, Kalimo H, Fernaeus SE, Nilsson CG, Viitanen M. Low TENS treatment on post-stroke paretic arm: a three-year follow-up. Clin Rehabil 2000; 14: 14-9.
Mehrholz J, Werner C, Kugler J, Pohl M. Electromechanical- assisted training for walking after stroke. Cochrane Database of Systematic Reviews, 2007; Issue 4. Art. No.: CD006185.
Wolf SL, Lecraw DE, Barton LA, Jann B. Forced use of hemiplegic upper extremities to reverse effect learned nonuse for chronic stroke. Exp Neurol 1989; 104: 125-32.
Nicolelis M. Brain Machine interfaces to restore motor function and probe neural circuits. Nature Reviews Neuroscience 2003; 4: 417-22.
Gutiérrez J, Cantillo J, Cariño RI, Elías D. Los Sistemas de Interfaz Cerebro-Computadora: una herramienta para apoyar la rehabilitación de pacientes con discapacidad motora. Revista de Investigación en Discapacidad 2013 [En prensa].
Cantillo J, Gutiérrez J, Cariño D, Elías D. Módulo para presentar e identificar tareas de imaginación de movimiento en registros de electroencefalografía. Pan American Health Care Exchange Congress 2013.
Penasco-Martin B, Gil-Agudo A, Bernal-Sahun A, Perez-Aguilar B, Pena-Gonzalez AI. Application of virtual reality in the motor aspects if neurorehabilitation. Rev Neurol 2010; 51(8): 481-8.
Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol 2004; 73: 61-72.