2014, Number 2
<< Back Next >>
Rev Cuba Endoc 2014; 25 (2)
Glycemic control and oxidative damage to biomolecules observed in type 2 diabetic people
Céspedes MEM, Riverón FG, Alonso RC, Cabrera Pérez-Sanz E
Language: Spanish
References: 34
Page: 46-56
PDF size: 240.74 Kb.
ABSTRACT
Introduction: poor glycemic control and lipid disorders are risk factors for vascular
complications caused by diabetes mellitus. These changes are associated to oxidative stress.
Objective: to analyze the lipid profile, the oxidative damage to biomolecules and the glycemic control in type 2 diabetic patients.
Methods: descriptive and cross-sectional study conducted in ninety four type 2 diabetic patients. The levels of blood glucose, glycated hemoglobin, creatinine, lipid profile, tiobarbituric acid reactive substances, and of carboxyl groups as indicators of lipid peroxidation and of protein oxidation were all estimated. Data were stratified by sex, time of disease progression and glycemic control (glucose ‹ 6.2 mmol/L vs. glucose ≥ 6.2 mmol/L; glycated hemoglobin ‹ 7 % vs. glycated hemoglobin ≥ 7 %).
Results: the triglyceride concentration increased in diabetics with poor glycemic
control (glycated hemoglobin ≥ 7 %). The tiobarbituric acid reactive substances and of carboxyl groups did not differ depending on sex and glycemic control. The levels of carboxyl groups were higher in diabetics compared to the reference values. It
was confirmed that there is positive association between the tiobarbituric acid reactive substances and the time of disease progression (r= 0.271; p= 0.008) and
negative association with high density lipoproteins (r= -0.449; p= 0.000). The amount of tiobarbituric acid reactive substances was higher in diabetics with 5
years of disease progression.
Conclusions: the dyslipidemic phenotype was proved in diabetic patients and the
oxidative damage to lipids results from the time of disease progression, regardless
of sex and glycemic control.
REFERENCES
Cuba. Ministerio de Salud Pública. Anuario Estadístico de Salud 2012. Dirección Nacional de Registros Médicos y Estadísticas de Salud. La Habana; 2013.
Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88:1254-64.
Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54:1615-25.
Sarwar N, Gao P, Seshasai SR, Gobin R, Kaptoge S, Di AE, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215-22.
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-70.
Ford ES, Li C, Sniderman A. Temporal changes in concentrations of lipids and apolipoprotein B among adults with diagnosed and undiagnosed diabetes, prediabetes, and normoglycemia: findings from the National Health and Nutrition Examination Survey 1988-1991 to 2005-2008. Cardiovasc Diabetol. 2013;12:26-39.
Santos CXC, Anilkumar N, Zhang M, Brewer AC, Shah AM. Redox signaling in cardiac myocytes. Free Radic Biol Med. 2011;50:777-93.
Jaganjac M, Tirosh O, Cohen G, Sasson S, Zarkovic N. Reactive aldehydessecond messengers of free radicals in diabetes mellitus. Free Radic Res. 2013;47(Suppl 1):39-48.
ADVANCE Collaborative Group, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560-72.
Duckworth W, Abraira C, Moritz T. Intensive glucose control and complications in American veterans with type 2 diabetes. N Engl J Med. 2009;360(2):129-39.
Peters AL, Schriger DL. The new diagnostic criteria for diabetes: the impact on management of diabetes and macrovascular risk factors. Am J Med. 1998;105:15S-9.
Cuba. Ministerio de Salud Pública. Centro de Investigaciones Biomédicas. Procedimientos Normativos Operacionales. La Habana; 2000.
Reinahuer H, Home PD, Kanagasabapathy AS, Heuck C. OMS. Diagnóstico y monitorización de la Diabetes Mellitus desde el laboratorio. Madrid: Editorial Momento Médico Iberoamericano; 2005. p. 40-50.
Yagi K. Lipid peroxides and human diseases. Chem Phys Lipids. 1987;45:337-51.
Reznick AZ, Packer L. Oxidative damage to proteins: Spectrophotometric method for the carbonyl assay. Methods in Enzymology. 1994;233:357-63.
Sone H, Tanaka S, Tanaka S, Iimuro S, Oida K, Yamasaki Y, et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab. 2011;96(11):3448-56.
Davì G, Falco A, Patrono C. Lipid Peroxidation in Diabetes Mellitus. Antioxid Redox Signal. 2005;7(1-2):256-68.
Kannel WB. Lipids, diabetes, and coronary heart disease: insights from the Framingham Study. Am Heart J. 1985;110(5):1100-7.
Pop D, Dâdârlat A, Zdrenghea M, Zdrenghea DT, Sitar-Tâut AV. Evolution of cardiovascular risk factors and ischemic heart disease in an elderly urban Romanian population over the course of 1 year. Clin Interv Aging. 2013;8:1497-503.
Manohar SM, Vaikasuvu SR, Deepthi K, Sachan A, Narasimha SR. An association of hyperglycemia with plasma malondialdehyde and atherogenic lipid risk factors in newly diagnosed Type 2 diabetic patients. J Res Med Sci. 2013;18(2):89-93.
De Carvalho V, Guedes P, Gonçalves L, De Cássia R. The role of hyperglycemia in the induction of oxidative stress and inflammatory process. Nutr Hosp. 2012;27(5):1391-8.
Nakhjavani M, Esteghamati A, Nowroozi S, Asgarani F, Rashidi A, Khalilzadeh O. Type 2 diabetes mellitus duration: an independent predictor of serum malondialdehyde levels. Singapore Med J. 2010;51(7):582-5.
Nourooz-Zadeh J, Rahimi A, Tajaddini-Sarmadi J. Relationships between plasma measures of oxidative stress and metabolic control in NIDDM. Diabetologia. 1997;40:647-53.
Benítez S, Pérez A, Sánchez-Quesada JL. Electronegative low-density lipoprotein subfraction from type 2 diabetic subjects is proatherogenic and unrelated to glycemic control. Diabetes Metab Res Rev. 2007;23:26-34.
Sampson MJ, Gopaul N, Davies IR, Hughes DA, Carrier MJ. Plasma F2 Isoprostanes. Direct evidence of increased free radical damage during acute hyperglycemia in type 2 diabetes. Diabetes Care. 2002;25:537-41.
Gopaul NK, Anggard EE, Mallet AI, Betteridge DJ, Wolff SP, Nourooz-Zadeh J. Plasma 8-epi-PGF2 levels are elevated in individuals with non-insulin dependent diabetes mellitus. FEBS Lett. 1995;368:225-9.
Likidlilid A, Patchanans N, Peerapatdit T, Sriratanasathavorn C. Lipid peroxidation and antioxidant enzyme activities in erythrocytes of type 2 diabetic patients. J Med Assoc Thai. 2010;93:682-93.
Bhutia Y, Ghosh A, Sherpa ML, Pal R, Mohanta PK. Serum malondialdehyde level: surrogate stress marker in the Sikkimese diabetics. J Nat Sci Biol Med. 2011;2(1):107-12.
Soliman GZ. Blood lipid peroxidation, superoxide dismutase, malondialdehyde, glutathione levels in Egyptian type 2 diabetic patients. Singapore Med J. 2008;49:129-36.
Shradha B, Sisodia SS. Diabetes, dyslipidemia, antioxidant and status of oxidative stress. Internat J Res Ayurv Pharm. 2010;1(1):33-42.
Shao B, Heinecke JW. HDL, lipid peroxidation, and atherosclerosis. J Lipid Res. 2009;50:599-601.
Maahs DM, Snell-Bergeon JK. Current knowledge and future directions on cardiovascular disease in diabetes. Diabetes Tech Therap. 2012;14(Suppl 1):75-6.
Yang H, Jin X, Kei Lam CW, Yan SK. Oxidative stress and diabetes mellitus. Clin Chem Lab Med. 2011;49(11):1773-82.
Kumawat M, Pahwa MB, Gahlaut VS, Singh N. Status of antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus with microvascular complications. Open Endocrinol J. 2009;3:12-5.