2014, Number 3
<< Back Next >>
Investigación en Discapacidad 2014; 3 (3)
Medical importance of biofilms of Staphylococcus epidermidis in prosthetic joint infections
Ortega-Peña S, Franco-Cendejas R
Language: Spanish
References: 71
Page: 106-113
PDF size: 277.62 Kb.
ABSTRACT
Joint replacement is a surgical procedure performed in patients with articular wear. This surgery helps them to improve their mobility and quality of life; however, it can cause complications in some cases. Prosthetic joint infection is the most serious and catastrophic complication that may occur after a joint replacement procedure. The most common etiologic agent in these infections is
Staphylococcus epidermidis. Prosthetic joint infections that are caused by
S. epidermidis are usually chronic and persistent because these microorganisms are found as a biofilm. This biofilm is a barrier that protects the bacterial cells from the action of antibiotics and the host’s immune response. The formation of the biofilm is a complex process that occurs in four phases. Better understanding of the pathophysiology of infections caused by biofilm-producing microorganisms can help to find more effective therapeutic strategies.
REFERENCES
Singh JA. Epidemiology of knee and hip arthroplasty: a systematic review. Open Orthop J. 2011; 16 (5): 80-85.
Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007; 89 (4): 780-785.
Daigle ME, Weinstein AM, Katz JN, Losina E. The cost-effectiveness of total joint arthroplasty: a systematic review of published literature. Best Pract Res Clin Rheumatol. 2012; 26 (5): 649-658.
Haanstra TM, van den Berg T, Ostelo RW et al. Systematic review: do patient expectations influence treatment outcomes in total knee and total hip arthroplasty? Health Qual Life Outcomes. 2012; 18 (10): 152.
Fernandes A, Dias M. The microbiological profiles of infected prosthetic implants with an emphasis on the organisms which form biofilms. J Clin Diagn Res. 2013; 7 (2): 219-223.
Shapiro IM, Hickok NJ, Parvizi J, Stewart S, Schaer TP. Molecular engineering of an orthopaedic implant: from bench to bedside. Eur Cell Mater. 2012; 24 (23): 362-370.
Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Böhler N, Labek G. Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty. 2013; 28 (8): 1329-1332.
Alegre-Rico F, Orozco CI. Infección en la artroplastia total de cadera primaria. Acta Ortopédica Mexicana. 2004; 18 (6): 235-239.
Trueba DC, Gil OF, Reyes MF, Minueza MT, Navarrete ÁJM. Reconstrucción acetabular en la artroplastia de revisión. Estudio retrospectivo de 76 casos. Hospital Español de México. Acta Ortopédica Mexicana. 2007; 21 (4): 182-188.
Chaidez RPA, Ilizaliturri SV, Valero GF, Lehmann MR, León HSR, Aguilera ZJM. Factores de riesgo y manejo de la infección en la artroplastia total de la rodilla. Acta Ortop Mex. 2001; 15 (5): 207-210.
Labek G, Todorov S, Iovanescu L, Stoica CI, Böhler N. Outcome after total ankle arthroplasty –results and findings from worldwide arthroplasty registers. Int Orthop. 2013; 37 (9): 1677-1682.
Kurtz SM, Lau E, Schmier J, Ong KL, Zhao K, Parvizi J. Infection burden for hip and knee arthroplasty in the United States. J Arthroplasty. 2008; 23 (7): 984-991.
Widmer AF. New developments in diagnosis and treatment of infection in orthopedic implants. Clin Infect Dis. 2001; 1 (33): 94-106.
Montanaro L, Speziale P, Campoccia D et al. Scenery of Staphylococcus implant infections in orthopedics. Future Microbiol. 2011; 6 (11): 1329-1349.
O’Gara JP, Humphreys H. Staphylococcus epidermidis biofilms: importance and implications. J Med Microbiol. 2001; 50 (7): 582-587.
Otto M. Staphylococcus epidermidis -the ``accidental˝ pathogen. Nat Rev Microbiol. 2009; 7 (8): 555-567.
Vlamakis H. The world of biofilms. Virulence. 2011; 2 (5): 431-434.
Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013; 136: 1-51.
Costerton JW, Post JC, Ehrlich GD et al. New methods for the detection of orthopedic and other biofilm infections. FEMS Immunol Med Microbiol. 2011; 61 (2): 133-140.
Uçkay I, Harbarth S, Ferry T et al. Meticillin resistance in orthopaedic coagulase-negative staphylococcal infections. J Hosp Infect. 2011; 79 (3): 248-253.
Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012; 33 (26): 5967-5982.
Fey PD, Olson ME. Current concepts in biofilm formation of Staphylococcus epidermidis. Future Microbiol. 2010; 5 (6): 917-933.
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter. 2012; 2 (4): 176-194.
Castrillón-Rivera LE, Palma-Ramos A, Padilla-Desgarennes MC. Importancia de las biopelículas en la práctica médica. Dermatología Rev Mex. 2010; 54 (1): 14-24.
Otto M. Staphylococcal biofilms. Curr Top Microbiol Immunol. 2008; 322: 207-228.
Vadyvaloo V, Otto M. Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Artif Organs. 2005; 28 (11): 1069-1078.
Von Eiff C, Peters G, Heilmann C. Pathogenesis of infections due to coagulase-negative staphylococci. Lancet Infect Dis. 2002; 2 (11): 677-685.
Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest. 2003; 112 (11): 1620-1625.
Reading NC, Sperandio V. Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett. 2006; 254 (1): 1-11.
Nayak N, Satpathy G, Nag HL et al. Slime production is essential for the adherence of Staphylococcus epidermidis in implant-related infections. J Hosp Infect. 2011; 77 (2): 153-156.
Rohde H, Burandt EC, Siemssen N et al. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials. 2007; 28 (9): 1711-1720.
Cue D, Lei MG, Lee CY. Genetic regulation of the intercellular adhesion locus in staphylococci. Front Cell Infect Microbiol. 2012; 26: 2: 38.
Fluckiger U, Ulrich M, Steinhuber A et al. Biofilm formation, icaADBC transcription, and polysaccharide intercellular adhesin synthesis by staphylococci in a device-related infection model. Infect Immun. 2005; 73 (3): 1811-1819.
Qin Z, Yang X, Yang L, Jiang J, Ou Y et al. Formation and properties of in vitro biofilms of ica-negative Staphylococcus epidermidis clinical isolates. J Med Microbiol. 2007; 56: 83-93.
Fitzpatrick F, Humphreys H, O’Gara JP. Evidence for icaADBC-independent biofilm development mechanism in methicillin-resistant Staphylococcus aureus clinical isolates. J Clin Microbiol. 2005; 43 (4): 1973-1976.
O’Gara JP. Ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett. 2007; 270 (2): 179-188.
Sadovskaya I, Vinogradov E, Flahaut S, Kogan G, Jabbouri S. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain, Staphylococcus epidermidis RP62A. Infect Immun. 2005; 73 (5): 3007-3017.
Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS. Extracellular DNA required for bacterial biofilm formation. Science. 2002; 295 (5559): 1487.
Nadell CD, Xavier JB, Foster KR. The sociobiology of biofilms. FEMS Microbiol Rev. 2009; 33 (1): 206-224.
McCann MT, Gilmore BF, Gorman SP. Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J Pharm Pharmacol. 2008; 60 (12): 1551-1571.
Götz F. Staphylococcus and biofilms. Mol Microbiol. 2002; 43 (6): 1367-1378.
Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M. Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis. 2003; 188 (5): 706-718.
Boles BR, Horswill AR. Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog. 2008; 254 4 (4) : e1000052.
Zimmerli W, Moser C. Pathogenesis and treatment concepts of orthopaedic biofilm infections. FEMS Immunol Med Microbiol. 2012; 65 (2): 158-168.
Rodríguez-Martínez JM, Pascual A. Activity of antimicrobial agents on bacterial biofilms. Enferm Infecc Microbiol Clin. 2008; 26 (2): 107-114.
Johnjulio W, Fuge LH, Kad M, Post C. Introduction to biofilms in family medicine. South Med J. 2012; 105 (1): 24-29.
Singh R, Ray P, Das A, Sharma M. Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother. 2010; 65 (9): 1955-1958.
Van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ. Acquired antibiotic resistance genes: an overview. Front Microbiol. 2011; 28 (2): 203.
Gomes F, Teixeira P, Ceri H, Oliveira R. Evaluation of antimicrobial activity of certain combinations of antibiotics against in vitro Staphylococcus epidermidis biofilms. Indian J Med Res. 2012; 135 (4): 542-547.
Grant SS, Hung DT. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence. 2013; 15 (4): 273-283.
Allison KR, Brynildsen MP, Collins JJ. Heterogeneous bacterial persisters and engineering approaches to eliminate them. Curr Opin Microbiol. 2011; 14 (5): 593-598.
Davies D. Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov. 2003; 2 (2): 114-122.
Du X, Zhu Y, Song Y et al. Molecular analysis of Staphylococcus epidermidis strains isolated from community and hospital environments in China. PLoS One. 2013; 8 (5): e62742.
Otto M. Molecular basis of Staphylococcus epidermidis infections. Semin Immunopathol. 2012; 34 (2): 201-214.
Rohde H, Frankenberger S, Zähringer U, Mack D. Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur J Cell Biol. 2010; 89 (1): 103-111.
Spiliopoulou AI, Krevvata MI, Kolonitsiou F et al. An extracellular Staphylococcus epidermidis polysaccharide: relation to polysaccharide intercellular adhesin and its implication in phagocytosis. BMC Microbiol. 2012; 12: 76.
Vuong C, Dürr M, Carmody AB, Peschel A, Klebanoff SJ, Otto M. Regulated expression of pathogen-associated molecular pattern molecules in Staphylococcus epidermidis: quorum-sensing determines pro-inflammatory capacity and production of phenol-soluble modulins. Cell Microbiol. 2004; 6 (8): 753-759.
Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013; 64: 175-188.
Montanaro L, Testoni F, Poggi A, Visai L, Speziale P, Arciola CR. Emerging pathogenetic mechanisms of the implant-related osteomyelitis by Staphylococcus aureus. Int J Artif Organs. 2011; 34 (9): 781-788.
Parvizi J, Jacovides C, Zmistowski B, Jung KA. Definition of periprosthetic joint infection: is there a consensus? Clin Orthop Relat Res. 2011; 469 (11): 3022-3030.
Tunney MM, Patrick S, Gorman SP et al. Improved detection of infection in hip replacements. A currently underestimated problem. J Bone Joint Surg Br. 1998; 80 (4): 568-572.
Trampuz A, Piper KE, Jacobson MJ et al. Sonication of removed hip and knee prostheses for diagnosis of infection. N Engl J Med. 2007; 357 (7): 654-663.
Portillo ME, Salvadó M, Trampuz A et al. Sonication versus vortexing of implants for diagnosis of prosthetic joint infection. J Clin Microbiol. 2013; 51 (2): 591-594.
Larsen LH, Lange J, Xu Y, Schønheyder HC. Optimizing culture methods for diagnosis of prosthetic joint infections: a summary of modifications and improvements reported since 1995. Med Microbiol. 2012; 61: 309-316.
Gomez E, Cazanave C, Cunningham SA et al. Prosthetic joint infection diagnosis using broad-range PCR of biofilms dislodged from knee and hip arthroplasty surfaces using sonication. J Clin Microbiol. 2012; 50 (11): 3501-3508.
Marín M, Garcia-Lechuz JM, Alonso P et al. Role of universal 16S rRNA gene PCR and sequencing in diagnosis of prosthetic joint infection. J Clin Microbiol. 2012; 50 (3): 583-589.
Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010; 59 (3): 227-238.
Shahrooei M, Hira V, Khodaparast L et al. Vaccination with SesC decreases Staphylococcus epidermidis biofilm formation. Infect Immun. 2012; 80 (10): 3660-3668.
Kaplan JB. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res. 2010; 89 (3): 205-218.
Vergidis P, Patel R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infect Dis Clin North Am. 2012; 26 (1): 173-186.