2014, Number 4
<< Back Next >>
Rev Mex Ortodon 2014; 2 (4)
A comparative study of fatigue resistance of NiTi archwires from three commercial brands
Serrano HG, Sáez EG, Álvarez GC, Kaori FH
Language: Spanish
References: 27
Page: 253-256
PDF size: 587.37 Kb.
ABSTRACT
Nickel-Titanium (NiTi) archwires have been widely used for initial alignment in order to produce light continuous forces and help reduce the risk of damage to the periodontal ligament. The objective of this study was to obtain the number of cycles that NiTi archwires withstand in flexural fatigue. Sixty circular 0.016” archwires from ORMCO (20), GAC (20) and 3M (20) were tested at 37
oC. Roth brackets (0.022x0.025”) were bonded to acrylic teeth. A universal testing machine (Instron 5567) was used until fracture occurred. A report of cycles fatigue was made for each sample. The results were statistically tested using the one-way ANOVA Test and a Tukey Test (p ‹ 0.001). The fractured surfaces were observed with a metallographic microscope (125X) to evaluate the fracture type. ORMCO archwires showed more elasticity than 3M and GAC archwires.
REFERENCES
Farnaz P, Rock WP. The load/deflection characteristics of thermally activated orthodontic archwires. European Journal of Orthodontics. 2003; 25: 417-421.
Rock WP, Wilson HJ. Forces exerted by orthodontic aligning archwires. British Journal of Orthodontics. 15: 255-259.
Garrec P, Tavernier B, Jordan L. Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire. Europan Journal of Orthodontics. 2005; 27: 402-407.
Garrec P, Jordan L. Stiffness in bending of a superelastic Ni-Ti Orthodontic wire as a function of cross sectional diemension. Angle Orthod. 2004; 74: 691-696.
Burstone CJ, Qin B, Morton JY. Chinese NiTi wire-a new orthodontic alloy. American Journal of Orthodontics. 1985; 87: 445-452.
Miura F, Mogi M, Ohura Y, Hamanaka H. The super-elastic property of the japanese NiTi alloy wire for use in orthodontics. American Journal of Orthodontics and Dentofacial Orthopedics. 1986; 90: 1-10.
Nakano H, Satoh K, Norris R, Jin T, Kamegai T, Isshikawa F, Katsura H. Mechanical properties of several nickel-titanium alloy wires in three-point bending tests. American Journal of Orthodontics and Dentofacial Orthopedics. 1999; 115: 390-394.
Han S, Quick D. Nickel-titanium spring properties in a simulates oral environment. The Angle Orthodontist. 1993; 63: 67-72.
Mallory CD, Jeryl D, Powers MJ, Brantley WA, Bussa HI. Force/deflection comparison of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2004; 126: 110-112.
Mayoral J, Mayoral G, Mayoral P. Ortodoncia principios fundamentales y práctica. España: Edit. Labor; 1983. pp. 409-410.
Phillips R, La ciencia de los materiales dentales. 9a ed. México: Edit. Mc Graw Hill; 1993. pp. 89-94, 646-648.
Gurgel J, Kerr S, Powers J, Le Crone V. Force- deflection properties of superelastic nickel-titanium archwires. Am J Orthod Dentofacial Orthop. 2001; 120: 378-382.
Eggeler G, Hornbogen E, Yawny A, Heckmann A, Wagner M. Structural and functional fatigue of NiTi shape memory alloys. Materials Science and Engineering A. 2004; 378: 24-33.
Tabanlí R, Simha N, Berg B. Mean stress on fatigue of NiTi. Materials Science and Engineering A. 1999; 273-275: 644-648.
Meling T, Odgaard J. Short-term temperature changes influence the force exerted by superelastic nickel-titanium archwires activated in orthodontic bending. Am J Orthod Dentofacial Orthop. 2001; 119: 263-273.
Proffit W. Ortodoncia contemporánea. 3a edición. España: Edit. Harcourt. pp. 327-328.
Paton A, Casey Neil, Fairbairn J, Banks W. Advances in the fatigue assessment of wire ropes. Ocean Engineering. 2002; 28: 491-518.
Dauskasdt R, Duerig T, Ritchie R. Porceedings of the materials research Society International Meeting on Advanced Material shape memory materials. Pittsburg: 1989. p. 243.
Zhang D, Ge R, Qiang Y. Research on the fatigue and fracture behavior due to the fretting wear of steel wire in hoisting rope. Wear Elsevier. 2003; 255: 1233-1237.
Zhou Z, Luo W, Liu J. Recent development in fretting research. Tribiology. 1997; 3 (17): 272-280.
Zhou Z, Vincent L. Mixed fretting regime. Wear. 1995; 181-183; 531-536.
Neyman A, Olszewski O. Research on fretting wear dependence of hardness ratio and friction coeficient of fretted couple. Wear. 1993; 102-104: 939-943.
Primak O, Klocke A, Kahl-Nieke B, Epple M. Fatigue of orthodontic nickel-yitanium (NiTi) wires in different fluids under constant mechanical stress. Materials Science and Engineering A. 2004; 378: 110-114.
Wilkinson P, Dysart P, Hood J, Herbison P. Load-deflection characteristics of superelastic nickel-titanium orthodonctic wires. AmJ Orthod Dentofacial Orthop. 2002; 121: 483-495.
Mullins W, Bagby M, Norman T. Mechanical behavior of thermo-responsive orthodontic archwires. Dent Mat. 1996; 12: 308-314.
Filleul M, Jordan L. Torsional properties of Ni-Ti and cooper Ni-Ti wires: the effect of temperature on physical properties. Eur J Orthod. 1997; 19: 637-646.
Moore R, Watts JTF, Hood JAA, Burritt DJ. Intra-oral temperature variation over 24 hours. Eur J Orthod. 1999; 21: 1-13.