2013, Number 2
Next >>
Rev Esp Cienc Salud 2013; 16 (2)
DNA epigenetic changes. Their role in wound healing, central nervous system and cancer
Valle MA
Language: Spanish
References: 33
Page: 49-54
PDF size: 672.30 Kb.
ABSTRACT
Epigenetics is described as the changes that do not alter the DNA sequence but affect gene expression.
Many types of modifications do exist especially in the N-terminal domain of the histones that give structure
to nucleosomes; these changes have direct implications in the expression or repression of genes, with
different consequences at the cellular level. One such modification is the addition of an acetyl group
on lysine residues (acetylation) which has been implicated in various processes such as wound healing,
in diseases of the central nervous system and cancer. The development of drugs capable of controlling
the generated epigenetic changes in various diseases is currently a broad field of study and where
promising results have been found.
REFERENCES
1- Ondarza R. 2012. La epigenética, la otra cara de la genética. Mensaje bioquímico. 36: 200-11.
2- Lagos-Sanchez E, Soto-Monge T. 2007 Epigenética y cáncer. Revista Médica de Costa Rica y Centroamérica. 580:177-82.
3-Spallota F, Cencioni C, Straino S, Nanni S, Rosati J, Artuso S, et al. 2103 A nitric oxide-dependent cross-talk between class I and III histone deacetylases accelerates skin repair. J Biol Chem. 288:11004-12
4- Shaw TJ, Martin P. 2009 Wound repair at a glance. J Cell Sci. 122:3209-13.
5- Rafehi H, El-Osta A, Karagiannis TC. 2012. Epigenetic mechanisms in the pathogenesis of diabetic foot ulcers. J Diabetes Complications. 26:554-61.
6- Caporali A, Meloni M, Vollenkle C, Bonci D, Sala-Newby G B, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, and Emanueli C. 2011. Deregulation of microRNA-503 contributes to diabetes mellitusinduced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation, 123: 282–291.
7- Li Y, Song YH, Li F, Yang T, Lu Y W, and Geng YJ. 2009. MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun, 381: 81–83.
8- El-Osta A, Brasacchio D, Yao D, Pocai A, Jones PL, Roeder R G, Cooper M E, and Brownlee M. 2008. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med, 205: 2409–2417
9- Shaw T, Martin P. 2009 Epigenetic reprogramming during wound healing: loss of polycomb-mediated silencing may enable upregulation of repair genes. EMBO Rep 10:881-6.
10- Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. 1990 J Biol Chem. 265: 17174-9.
11- Gutiérrez-Martínez JR, Tomé-Nestal C. 2006. Protocolos de neurología: Ataxia aguda. Bol pediatr 46(Supl. 1): 56-60.
12- Helmlinger D, Hardy S, Sasorith S, Klein F, Robert F, Weber C, et al. 2004. Ataxin-7 is a subunit of GCN5 histone acetyltransferasecontaining complexes.Hum Mol Genet 13:1257-65. 13- Duncan C, An M, Papanikolaou T, Rugani C, Vitelli C, Ellerby L. 2013. Histone deacetylase-3 interacts with ataxin-7 and is altered in a spinocerebellar ataxia type 7 mouse model. Mol Neurodeg. 8:42
14- Nestler EJ. 2009. Epigenetic mechanisms in psychiatry. Biol Psychiatry 65: 189-90.
15- Covington HE,.2009. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 29: 11451–60.
16- Benes FM, Lim B, Matzilevich D, Walsh JP, Subburaju S. 2007. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars. Proc Natl Acad Sci 104: 10164–69.
17- Covington III HE, Maze I, LaPlant QC, Vialou VF, Ohnishi YN, Berton O, Fass DM, Renthal W, Rush III AJ, Wu EY, Ghose S, Krishnan V, Russo SJ, Tamminga C, Haggarty SJ, Nestler EJ. 2009. Antidepressant Actions of Histone Deacetylase Inhibitors. J Neurosci 26: 11451-11460.
18- Covington HE. 2011. Hippocampal-dependent antidepressantlike activity of histone deacetylase inhibition. Neurosci Lett 493: 122–6.
19- Kilts CD. 2000. In vivo imaging of the pharmacodynamics and pharmacokinetics of lithium. J Clin Psychiatry 61 Suppl 9: 41–6.
20- Schroeder F, Lewis M, Fass D, Wagner F, Zhang F, Hennig K, et al. 2013. A selective HDAC 1/2 inhibitor modulates chromatin and gene expression in brain and alters mouse behavior in two mood-related tests. PLoS ONE 8(8): e71323.
21- Hrabeta J, Stiborova M, Adam V, Kizek R, Eckschlager T. 2013. Histone deacetylase inhibitors in cancer therapy. A review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 157:XX.
22- Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. 2004. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59(2):177-89.
23- Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, et al. 2005. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res Treat 94:11-6
24- Song J, Noh JH, Lee JH, Eun JW, Ahn YM, Kim SY et al. 2005. Increased expression of histone deacetylase 2 is found in human gastric cancer. APMIS 113:264-8.
25- Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Gottlicher M. 2004. Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5:455-63.
26- Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, et al 2006. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548-58.
27- Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, et al. 2008. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res 14:1669-77.
28- Nakagawa M, Oda Y, Eguchi T, Aishima S, Yao T, Hosoi F, et al. 2007. Expression profile of class I histone deacetylases in human cancer tissues. Oncol Rep 18:769-74.
29- Oehme I, Deubzer HE, Wegener D, Pickert D, Linke JP, Hero B, et al. 2009. Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15:91-9.
30- Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, et al. 1999. A synthetic inhibitor of histone deacetylase, MS-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci 96:4592-7.
31- Khan O, La Thangue NB. 2008. Drug Insight: histone deacetylase inhibitor-based therapies for cutaneous T-cell lymphomas. Nat Clin Pract Onco. 5:714-726.
32- Whittaker SJ, Demierre MF, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH. 2010. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 28:4485-4491.
33- Feng D, Wu J, Tian Y, Zhou H, Zhou Y, Zhao W. 2013. Targeting of Histone Deacetylases to Reactivate Tumour Suppressor Genes and Its Therapeutic Potential in a Human Cervical Cancer Xenograft Model. PLoS ONE 8(11): e80657.
34- Lin S-F, Lin J-D, Chou T-C, Huang Y-Y, Wong RJ (2013) Utility of a Histone Deacetylase Inhibitor (PXD101) for Thyroid Cancer Treatment. PLoS ONE 8(10): e77684.