2014, Number 609
<< Back Next >>
Rev Med Cos Cen 2014; 71 (609)
Diagnóstico molecular y tratamiento de leucemias
Aragón-González M, Aragón-González C
Language: Spanish
References: 27
Page: 39-45
PDF size: 180.55 Kb.
ABSTRACT
During the last years, with
molecular biology advances, it
has been possible the detection of
fusion genes that present encoder
sequences of transcription
factors. This way it has been
demonstrated that the BCRABL
fusion gene is responsible
of mieloproliferation in Cronical
Mielicytic Leukemia. In Acute
Promielocytic Leukemia it
has to do with chromosomical
translocations that envolves
the Retinoic Acid’s alpha
receptor over 17’s chromosome,
forming the PML-RARα, a
fusion gene that inhibits cellular
differentiation and originates
lethal proliferation of immature
promielicytes of this pathology.
Currently there are proof that
show several steps involved in
the Leukemia initiation, and
based on molecular genetic
advances there have been
identified several pathological
mutations. In this review we
analyze the leukemias genomical
topicality, its treatment from
genetical therapy point of view,
as well as the reference of a new
indirect marker, the Zap 70.
REFERENCES
Bolen JB. Nonreceptor tyrosine protein kinases. Oncogene 1993;8:2025-31.
Branford S, Rudzki Z, Harper A, Grigg A, Taylor K, Durrant S, et al. Imatinib produces significantly superior responses compared to interferon alfa puls cytarabine in patients with newly diagnosed chronic myeloid leukemia en chronic phase. Leukemia. 2003. Natur Publishin Group 0887.6924-03, http://www.nature.com
Chan AC, Irving BA, Fraser JD, Weiss A. The x Chain is associated with a tyrosine kinase and upon T-cell antigen receptor stimulation associates with ZAP-70, a 70 kDa tyrosine phosphoprotein. Proc Natl Acad Sci USA 1991;88:9166-70.
Chan AC, Iwashima M, Turck CW, Weiss A. ZAP-70: a 70 kd proteintyrosine kinase that associates with the TCR zeta chain. Cell 1992;71:649-62.
Chen L, Widhopf G, Huynh L, Rassenti L, Rai K R, Weiss A, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002;100:4609-14.
Collins S. The role of retinoids and retinoic acid receptors in normal hematopoiesis. Leukemia 2002; 16: 1896-1905.
Deininger M, Goldman J, Melo J. The molecular biology of chronic myeloid leukemia. Blood 200; 96: 3343-3356.
Druker BJ. Imatinib mesylate in the treatment of chronic myeloid leukemia. Expert Opin Pharmacother 2003; 4: 963-971.
Graf T. Diferrentiation polasticity of hematopoietic cells. Blood 2002, 99: 3089-3101.
Hehlmann R, Berger U, Pfirmann M, Heimpel H, Hochhaus A, Hasford J, et al. Drug treatmen is superior to allografting as first-line therapy in chronic myeloid leukemia. Blood. 2007; 109: 468-492.
Huntington F, Willard & Geoffrey S. Ginsbur. Genomic and Personalized Medicine. 2009; 70: 844-855.
Jiménez B. R. Historia e Investigación de la Leucemia en Costa Rica. Revista Biológica Tropical, 2004. 52: 559-569.
Kakizuka A, Miller W, et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RAR alpha with a novel putative transcription factor. Cell 1991; 66: 663-674.
Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol. 2000; 12:242-9
Look A. Oncogenic transcription factors in the human acute leukemias. Science 1997; 278:1059-1064.
Lucas C, Harris R, Giannoudis A, Davies A, Knight K, Watmough S, Wang L & Clark R. Crhonic myeloid leukemia patients with the e13a2 BCRABL fusion transcript have inferior responses to imatinib compared to patients with the e14a2 transcript. Hematologica. 2009; 94 (10): 1362- 1367.
Martínez M, Zafra G, Reynoso E, Astudillo H, Nambo M, Benitez L, Martinez A, Rivera R, Gariglio P. La Hemato-oncología molecular y las nuevas estrategias terapéuticas específicas en leucemia. Gac Méd Méx, 2006; 142 (2): 145-149.
Orchard JA, Ibbotson RE. Davis Z, Wiestner A, Rosenwald A, Thomas PW, et al. ZAP-70 expression and prognosis in chronic lymphocytic ARAGÓN, ARAGÓN: DIAGNÓSTICO MOLECULAR Y TRATAMIENTO DE LEUCEMIAS 45 leukaemia. Lancet 2004;363:105-11.
Pandolfi P, Alcalay M, Longo L, et al. Molecular genetics of the t(15-17) of acute promyelocytic leukemia (APL). LEUKEMIA 1992; 6 (Suppl 3): 120S – 122S.
Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001;194:1639- 47.
Rosenwald A, Chuang E, Wiestner A, Alizadeh A, Arthur D, Mitchell J, Marti G, Fowler D, Wilson W, et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood. 2004; 104: 1428- 1434.
Rowley J, Golomb H, Dougherty C. 15/17 translocation a consistent chromosomal change in acute promyelocytic. Lancet 1977; 1: 549- 550.
Tallman M, Andersen J, Schiffer C, et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997; 337: 1021-1028.
Tamayo P, Slonim D, Mesinov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander E, Golub T. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA. 1999; 96: 2907- 2912.
The H, Chomienne C, Lanotte M, Degos L, Dejean A. The t(15;17) translocations of acute promyelocytic leukaemia fases the retinoic acid receptor alpha gene to a novel transcribed locus. Nature 1990; 347: 558-561.
Walgren R, Meucci M, McLeod H. Pharmacogenomic discovery approaches: will the real genes please stand up?. J Clin Oncol. 2005; 23:7342-7349.
Wiestner A, Rosenwald A, Barry TS, Wright G, Davis RE, Henrickson SE, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood 2003;101:4944-51.