2014, Number 1
<< Back Next >>
Rev Cubana Med Trop 2014; 66 (1)
Effect of larval competition on populations of the dengue vector collected in Medellín, Colombia
Giraldo VBE, Martínez GM
Language: Spanish
References: 34
Page: 84-100
PDF size: 491.93 Kb.
ABSTRACT
Introduction: Aedes aegypti is the vector transmitting the dengue virus. Larval density may affect adult life, with an impact on viral transmission capacity.
Objective: determine the effect of larval competition caused by high density in
Aedes aegypti colonies from areas of high and low dengue incidence in the city of Medellín, Colombia, and in a reference colony in the laboratory.
Methods: the three colonies were evaluated for larval development and survival time, as well as size and survival time in adults.
Results: it was found that in high density conditions larval competition significantly shortened development and survival time in the last larval stages. High density during the larval stage also brought about changes in adults from the three colonies, represented by a significantly reduced size and a decrease in survival time (the latter only in the field colonies).
Conclusion: no differences in competitive effect were found between the field colonies from areas with unequal dengue incidence in Medellín. However, the difference in the response obtained from the laboratory colony in contrast to the field colony, points to the need to evaluate the ecological parameters of wild
Aedes aegypti populations to obtain a more accurate view of the behavior of the vector. Laboratory studies in progress will make it possible to know whether the differences found between the colonies affect the competence of
Aedes aegypti for dengue virus infection.
REFERENCES
Jansen CC, Beebe NW. The dengue vector Aedes aegypti: what comes next. Microbes Infect. 2010;12(4):272-9.
Lin CY, Huang CH, Chen YH. Classification of dengue: the clinical use of World Health Organization 2009 guideline. J Formos Med Assoc. 2013 Feb;112(2):61-3.
Bargielowski I, Nimmo D, Alphey L, Koella JC. Comparison of life history characteristics of the genetically modified OX513A line and a wild type strain of Aedes aegypti. PLoS One. 2011;6(6):e20699.
Marquardt WC, Black W, Freier J, Hagedorn H, Moore C, Hemingway J, et al. Biology of Disease Vectors. Cap 8. 2da. ed. California (U.S.A.): Elsevier Academic Press; 2005.
Beserra EB, Fernandes CR, Ribeiro PS. Relação entre densidade larval e ciclo de vida, tamanho e fecundidade de Aedes (Stegomyia) aegypti (L.) (Diptera: Culicidae) em laboratório. Neotrop Entomol. 2009;38(6):847-52.
Westbrook CJ, Reiskind MH, Pesko KN, Greene KE, Lounibos LP. Larval environmental temperature and the susceptibility of Aedes albopictus Skuse (Diptera: Culicidae) to Chikungunya virus. Vector Borne Zoonotic Dis. 2010;10(3):241-7.
Halstead SB. Dengue virus-mosquito interactions. Annu Rev Entomol. 2008;53:273-91.
Alto BW, Reiskind MH, Lounibos LP. Size alters susceptibility of vectors to dengue virus infection and dissemination. Am J Trop Med Hyg. 2008;79(5):688.
Quintero Gil DC, Osorio Benítez JE, Martínez-Gutiérrez M. Vector competence: Entomological considerations and its implications on the epidemiology of dengue. Iatreia. 2010;23(2):137-45.
Reiskind M, Lounibos L. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med Vet Entomol. 2009;23(1):62-8.
Gama RA, Alves KdC, Martins RF, Eiras ÁE, Resende MCd. Effect of larval density on adult size of Aedes aegypti reared under laboratory conditions. Rev Soc Bras Med Trop. 2005;38(1):64-6.
Walsh R, Facchinelli L, Ramsey J, Bond J, Gould F. Assessing the impact of density dependence in field populations of Aedes aegypti. J Vector Ecol. 2011;36(2):300-7.
Muturi EJ, Blackshear M, Montgomery A. Temperature and density dependent effects of larval environment on Aedes aegypti competence for an alphavirus. J Vector Ecol. 2012;37(1):154-61.
Alto BW, Lounibos LP, Higgs S, Juliano SA. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology. 2005;86(12):3279-88.
Uribe A, Ospina M, Díaz F, Osorio J, Gutierrez. MM. Diferencias en la capacidad de replicación de las cepas del virus dengue, serotipos 1 y 3, aisladas en Medellín en poblaciones urbanas de Aedes aegypti recolectadas en la misma zona geográfica. Infection. 2012;16(S1):106.
Forattini OP. Culicidologia médica: identificação, biologia, epidemiologia; Medical culicidology: ID, biology, epidemiology; São Paulo: Editora da Universidade de São Paulo; 2002. p. 860.
Uribe A, Marín E, Quintero C, Arbelaez L, Martínez-Gutiérrez M. Evaluación de infección natural por virus dengue en mosquitos Aedes aegypti colectados en zonas de alto y bajo riesgo de la enfermedad en la ciudad de Medellín. Hechos Microb. 2011;6(S1):53.
Harbach RE, Knight KL. Taxonomists' glossary of mosquito anatomy. Marlton, New Jersey: Plexus Publishing Inc.; 1980. p. 415.
Briegel H, Kaiser C. Life-span of mosquitoes (Culicidae, Diptera) under laboratory conditions. Gerontology. 1973;19(4):240-9.
Reiskind MH, Walton ET, Wilson ML. Nutrient-dependent reduced growth and survival of larval Culex restuans (Diptera: Culicidae): laboratory and field experiments in Michigan. J Med Entomol. 2004;41(4):650-6.
Maciá A. Effects of larval crowding on development time, survival and weight at metamorphosis in Aedes aegypti (Diptera: Culicidae). Rev Soc Entomol Argent. 2009;68(1-2):107-14.
Mitchell Foster K, Ma B, Warsame Ali S, Logan C, Rau M, Lowenberger C. The influence of larval density, food stress, and parasitism on the bionomics of the dengue vector Aedes aegypti (Diptera: Culicidae): implications for integrated vector management. J Vector Ecol. 2012;37(1):221-9.
Arrivillaga J, Barrera R. Food as a limiting factor for Aedes aegypti in waterstorage containers. J Vector Ecol. 2004;29:11-20.
Telang A, Frame L, Brown MR. Larval feeding duration affects ecdysteroid levels and nutritional reserves regulating pupal commitment in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). J Exp Biol. 2007;210(5):854-64.
Koenekoop RK, Livdahl TP. Cannibalism among Aedes triseriatus larvae. Ecol Entomol. 1986;11(1):111-4.
Agnew P, Koella JC. Life history interactions with environmental conditions in a hostparasite relationship and the parasite's mode of transmission. Evol Ecol. 1999;13(1):67-91.
Jirakanjanakit N, Leemingsawat S, Thongrungkiat S, Apiwathnasorn C, Singhaniyom S, Bellec C, et al. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop Med Int Health. 2007;12(11):1354-60.
Maciel de Freitas R, Codeco C, Lourenço de Oliveira R. Body size associated survival and dispersal rates of Aedes aegypti in Rio de Janeiro. Med Vet Entomol. 2007;21(3):284-92.
Agnew P, Haussy C, Michalakis Y. Effects of density and larval competition on selected life history traits of Culex pipiens quinquefasciatus (Diptera: Culicidae). J Med Entomol. 2000;37(5):732-5.
Rebollar-Téllez EA, Magallón E, Solís-Franco RR. Efecto de hacinamiento larval sobre algunas características del adulto de Culex pipiens quin-quefasciatus (Diptera:Culicidae). Rev Biomédica. 1995;6:5-10.
Milby M, Reisen W. Estimation of vectorial capacity: vector survivorship. Bull Soc Vector Ecol. 1989;14(1):47-54.
Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 1990;36(3):165-72.
Alto BW, Lounibos LP, Mores CN, Reiskind MH. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc Biol Sci. 2008;275(1633):463-71.
Scott TW, Amerasinghe PH, Morrison AC, Lorenz LH, Clark GG, Strickman D, et al. Longitudinal studies of Aedes aegypti (Diptera:Culicidae) in Thailand and Puerto Rico: blood feeding frequency. J Med Entomol. 2000;37(1):89-101.