2014, Number 3
<< Back Next >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2014; 25 (3)
Consensus process in mental models and its application to agile software development in bioinformatics
Pérez TK, Leyva VMY, Estrada SV
Language: Spanish
References: 35
Page: 317-331
PDF size: 343.72 Kb.
ABSTRACT
Fuzzy cognitive maps have proven useful to represent both individual and group mental models. When dealing with problems such as the analysis of complex systems or decision making, it is usually advisable to perform a consensus process allowing to achieve mutual agreement between the members of the team. In this paper a model is developed for consensus processes in mental models with the use of fuzzy cognitive maps and computing with words, based on the 2-tuple linguistic representation model. The model is shown graphically and a description is provided of its main activities. A study case is presented which has to do with software development for bioinformatics.
REFERENCES
Mata F, Martínez L, Herrera-Viedma E. An adaptive consensus support model for group decision-making problems in a multigranular fuzzy linguistic context. Fuzzy Systems, IEEE Transactions on. 2009;17(2):279-90.
Mata F. Modelos para sistemas de apoyo al consenso en problemas de toma de decisión en grupo definidos en contextos lingüísticos multigranulares. Jaén, España: Universidad de Jaén. Tesis doctoral; 2006.
Mata F, Martínez JC. Consensus reaching with different aggregation techniques. Jaén, Spain: University of Jaén; 2010.
Gray S. Fuzzy cognitive maps as representations of mental models and group beliefs. In: Fuzzy cognitive maps for applied sciences and engineering. Springer. 2014:29-48.
Salmeron JL. Augmented fuzzy cognitive maps for modelling LMS critical success factors. Knowledge-Based Systems. 2009(22)4:275-8.
Salmeron JL. Supporting decision makers with fuzzy cognitive maps. Res Technol Manag. 2009(52)3:53-9.
Salmeron JL, Vidal R, Mena A. Ranking fuzzy cognitive map based scenarios with TOPSIS. Exp Syst Applicat. 2012;(39)3:2443-50.
Bueno S, Salmeron JL. Benchmarking main activation functions in fuzzy cognitive maps. Expert Systems with Applications. 2009(36)3:5221-9.
Linstone HA, Turoff M. The Delphi Method: techniques and applications. Addison- Wesley. 1975:50-2.
Bryson N. Generating consensus fuzzy cognitive maps. In: IASTED International Conference on Intelligent Information Systems (IIS '97). Bahamas: Grand Bahama Island, 1997.
Singh A. Architecture value mapping: using fuzzy cognitive maps as a reasoning mechanism for multi-criteria conceptual design evaluation. Missouri: University of Science and Technology. PhD Thesis; 2011.
Lamy JB. Testing methods for decision support systems. In: Decision Support Systems. Jao CS, ed. InTech; 2010.
Chong A, Wong KW. On the fuzzy cognitive map attractor distance. Singapore: IEEE Congress on Evolutionary Computation, CEC 2007; 2008.
Iqbal MA. A new requirement prioritization model for market driven products using analytical hierarchical process. In: International Conference on Data Storage and Data Engineering; 2010.
Xirogiannis G. Fuzzy cognitive maps in banking business process performance measurement. In: Glykas M. Fuzzy cognitive maps. Springer. 2010:161-200.
Pérez-Teruel KA. Linguistic software requirement prioritization model with heterogeneous information. Mazatlán, Mexico: Fourth International Workshop on Knowledge Discovery, Knowledge Management and Decision Support (EUREKA'13); 2013.
Senge PM. La quinta disciplina: el arte y la práctica de la organización abierta al aprendizaje: Ediciones Granica SA; 2004.
Pérez-Teruel K, Leyva-Vázquez M. Neutrosophic logic for mental model elicitation and analysis. Neutrosophic Sets and Systems. 2012:31-3.
Axelrod RM. Structure of decision: the cognitive maps of political elites: Princeton University Press; 1976.
Puente Águeda C. Estudio de las relaciones causales. Anal Mecán Electr. 2010(87). p. 54-9.
Kosko B. Fuzzy cognitive maps. International Journal of Man-Machine Studies. 1986(24):65-75.
Leyva-Vázquez M. Técnicas para la representación del conocimiento causal. Un estudio de caso en Informática Médica. La Habana: Rev Cubana Inf Cienc Salud. 2013 [citado 31 de mayo de 2013];(24)1. Disponible en: http://scielo.sld.cu/scielo.php?pid=S230721132013000100006&script=sci_arttext&tln g=pt
Khan MS, Quaddus M. Group decision support using fuzzy cognitive maps for causal reasoning. Group Decision and Negotiation. 2004(13)5:463-80.
Leyva-Vázquez MY. Modelo para el análisis de escenarios basados en mapas cognitivos difusos: estudio de caso en software biomédico. Ingeniería y Universidad. 2013(17)2:375-90.
Tapia García JM. Un problema de consenso para problemas de toma de decisiones multicriterio en grupo mediante relaciones de preferencia intervalares difusas lingüísticas. Rev Métod Cuantitat Econom Empr. 2012(14)1:36-53.
Leyva-Vázquez M. A model for enterprise architecture scenario analysis based on fuzzy cognitive maps and OWA operators. In: Electronics Communications and Computers (CONIELECOMP). International Conference; 2014:243-7.
Sokar IY. KPIs target adjustment based on trade-off evaluation using fuzzy cognitive maps. Austr Jour Bas Appl Scienc. 2011(5)12. p. 2048-53.
Herrera F. Computing with words in decision making: foundations, trends and prospects. Fuz Optimiz Decis Mak. 2009(8)4:337-64.
Pérez-Teruel K. Computación con palabras en la toma de decisiones mediante mapas cognitivos difusos. Rev Cubana Cienc Informát. 2014(8)2:en prensa.
Senge P. La quinta disciplina en la práctica. Ediciones Granica SA; 2005.
Palomares I, Martínez L. Attitude-Driven Web Consensus Support System for Large-Scale GDM Problems Based on Fuzzy Linguistic Approach. In: Advances in artificial intelligence. Springer. 2013:91-100.
Deutsch M, Gerard HB. A study of normative and informational social influences upon individual judgment. Jour Abnor Soc Psychol. 1955(51)3:629.
Chow T, Cao DB. A survey study of critical success factors in agile software projects. Jour Syst Softw. 2008(81)6. p. 961-71.
Herrera F, Martínez L. A 2-tuple fuzzy linguistic representation model for computing with words. Fuzzy Systems, IEEE Transactions on. 2000(8)6:746-52.
Stach W. Learning and aggregation of fuzzy cognitive maps. An evolutionary approach. University of Alberta: Doctoral Thesis; 2011.