2005, Number 6
<< Back Next >>
Gac Med Mex 2005; 141 (6)
Signal transduction, pillar of the neurobiological integration of memory. An alternative view to the cholinergic hypothesis.
Mansilla-Olivares A
Language: Spanish
References: 207
Page: 513-526
PDF size: 161.94 Kb.
ABSTRACT
Neurophysiological, biochemical and molecular processes described in the integration of memory are closely related with neurotransmitters such as glutamate and serotonin (5HT) and with the function of calcium and potassium ion channels more than with cholinergic activity.
In fact, glutamate and 5-HT receptors are closely related with Long-Term potentiation (LTP) processes, the mechanism by which memory is preserved throughout time. That is, the activation of the 5-HT4 receptor triggers a transduction signal that after influencing nuclear cell activity, provokes several presynaptic changes, which leads to the displacement of magnesium from the postsynaptic area depolarizing the neuron and leading to the activation of N-methyl-D-aspartate receptors (NMDA). As a whole, this process contributes to the support and perpetuation of LTP, which consists of the following processes: LTP1 that depends on protein kinase activity; LTP2 linked to translation of genes; and LTP3 closely related to genes transcription. On the opposite side but in perfect balance, we find the mechanism of Long-Term depression (LTD), which is triggered instead when the Ca++ flow decreases in the presynaptic neuron activating the inhibitor-1 enzyme that promotes the dephosphorylation of a calmodulin-dependent protein kinase II and as a result, the inhibition of autophosphorylation and consequently of LTP too.
Despite the widespread dissemination of the cholinergic hypothesis in Alzheimer’s disease, memory build up rather than involving acetylcholine essentially depends on the participation of other neurotransmitters such as 5-HT and glutamate, which have not been adequately considered in the treatment of this disease. However, beyond neurotransmission, it is the cellular mechanism of autophosphorylation of several protein kinases, the process susceptible of being activated or controlled by the action of distinct substances. In such a case, it would be possible to exert some influence on gene expression improving perhaps, some of the physiopathological deficits that characterize memory disruption.
REFERENCES
Mansilla OA, Barajas MH, Argüero SR. Theoretical aspects of the neurobiological integration of memory. Med Hypothesis 2000;54:51-58.
2. Bliss TVP, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 1993;361:31-39.
3. Ooménech T, Beleta J, Femández AG, Gristwood RW, Cruz SF, Tolosa E. Palacios JM. Identification and characterization of serotonin 5-HT4 receptor binding sites in human brain: comparison with other mammalian species. Mol Brain Res 1994;21:176-180.
4. Mengod G, Vilaró MT, Raurich A, Lopez-Gimenez JF, Cortes R, Palacios JM. 5-HT receptors in mammalian brain: receptor autoradiography and in situ hydrolisation studies of new ligands and newly identified receptors. Histochem J 1996;28:747-758.
5. Fontana OJ, Oaniels SE, Wong EHK, Clark RO, Eglen RM. The effects of novel, selective 5-hydroxytryptamine (5-HT)4 receptor ligands in rat spatial navigation. Neuropharmacology 1997;4/5:689-696.
6. Terry AV, Buccafusco JL, Jackson WJ, Predergast MA, Fontana OJ, Wong EH, et al. Enhanced delayed matching performance in younger and older macaques administered the 5-HT4 receptor agonist, RS17017. Psychopharmacol
7. Blondel O, Gastineau M, Oahmoune Y, Langlois M, Fischmeister R. Cloning, expression, and pharmacology of four human 5-hydroxytryptamine4 receptor isoforms produced by alternative splice in the carboxyl terminus. J Neurochem 1998;70:2252-2261.
8. Bockaert J, Claeysen S, Oumuis A. Molecular biology, function and pharmacological role of 5-HT4 receptors. Arch PharmacoI 1998;35:1-4.
9. Cichol S, Kesper K, Propping P, Nothen MM. Assignment of the human serotonin 4 receptor gene (HTR4) to the long arm of chromosome 5 (5q31-q33). Mol Membr BioI1998;15:75-78.
Claeysen S, Faye P, Sebben M, Lemaires BJ, Oumuis A, Taviaux S. Assignment of 5 hydroxytryptamine receptor (HTR4) to human chromosome 5 bands q31-q33 by in situ hybridization. Cytoenet Cell Genet 1997;78:133-134.
Gerald C, Adham A, Kao HT, Olsen MA, Laz TM, Schechter LE, et al. The 5-HT4 receptor: molecular cloning and pharma-cological characterization of two splice variants. EMBO J 1995;14:2806-2815.
Barnes NM, Sharp TA. A review of central 5-HT receptors and their function. NeuropharmacoI1999;38:1083-1152.
Yamaguchi T, Suzuki M, Yamamoto M. Facilitation of acetylcholine release in rat frontal cortex by indeloxazine hydrochloride: involvement of endogenous serotonine and 5-HT4 receptors. Arch PharmacoI1997;356:712-720.
Yamaguchi T, Suzuki M, Yamamoto M. Evidence for 5-HT4 receptor involvement in the enhancement of the acetylcholine release by p-chloroamphetamine. Brain Res 1997;772:95-101.
Claeysen S, Sebben M, Journot L. Cloning, expression and pharmacology of the mouse 5 HT4L receptor. FEBS Lett 1996;398:19-25.
Fagni L, Oumuis A, Sebben M, Bockaert J. The 5-HT4 receptor subtype inhibits K+ current in culliculineurones via activation of a cyclic AMP-dependent protein kinase. Br J Pharmacol 1992;1 05:973-979.
Van den Wyngaert I, Gommeren W, Verhasselt P, Jurzak M, Leysen J, Luyten W, BenderE. Cloning and expression of ahuman serotonin 5-HT4 receptor cONA. J Neurochem 1997;69:1810-1819.
Eison AS, Eison MS, Iversen SO. The behavioral effects of a novel substance P analogue following infusion into the ventral tegmental area and like substantia nigra of the rat brain. Brain Res 1992;238:137-152.
Reynolds GP, Mason SL, Meldrum A, De Keczer S, Panes H, Eglen RM, Wong E. H.5 Hydroxytryptamine (5-HT)4 receptors in postmortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br J Pharmacol1995;114:993-998.
Goldsmith BA, Abrams TW. cAMP modulates multiple K+ currents, increasing spike duration and excitability in Aplysia sensory neurons. Proc Natl Acad Sci 1991;89:11481-11485.
Klein M, Camardo J, Kandel ER. Serotonin modulates a specific potassium current in the sensory neurons that show presynaptic facilitation in Aplysia. Proc Natl Acad Sci 1982;79:5713-5717.
Kukuljan M, Labarca P, Latorre R. Molecular determinants of ion conduction and inactivation in K+ channels. Am J Physiol 1995;268:C535-C556.
Walsh JP, Byrne JH. Forskolin mimics and blocks a serotonin-sensitive decreased K+ conductance in tail sensory neurons of Aplysia. Neurosci Lett 1984;52:7-11.
Bredt OS, Ferris ChO, Snyder SH. Nitric oxide synthase regulatory sites. Phosphorylation by cyclic AMP-dependent protein kinase, protein kinase e, and calcium/calmodulin protein kinase; identification of flavin and calmodulin binding sites. J Biol Chem 1992;267:10976-10981.
Hawkins RO, Kandel ER, Siegelbaum SA. Learning to modulate transmitter release: Themes and variations in synaptic plasticity. Annu Rev Neurosci 1993;16:625-665.
Hochner B, Kandel ER. Modulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening. Proc Natl Acad Sci 1992;89:11476-11480.
Shuster MJ, Camardo JS, Siegelbaum SA, Kandel ER. Cyclic AMP-dependent protein kinase closes the serotonin-sensitive K+ channels of Aplysia sensory neurones in cell-free membrane patches. Nature 1985;313:392-395.
Siegelbaum SA, Camardo JS, Kandel ER. Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature 1982;299:413-417.
Alkon DL. Calcium-mediated reduction of ionic currents: A biophysical memory trace. Science 1984;226:1037-1045.
Alkon DL, Lederhendler 1, Shoukimas JJ. Primary changes of membrane currents during retention of associative learning. Science 1982;215:693-695.
Alkon DL, Shoukimas JJ, Heldman E. Calcium-mediated decrease of a voltage-dependent potassium current. Biophys J 1982;40:245-250.
Bahler M, Benfenati F, Valtorta F, Greengard P. The synapsins and the regulation of synaptic function. Bioassays 1990;12:259-263.
Ghirardi M, Braha O, Hochner S, Montarolo PG, Kandel ER, Oale N. Roles of PKA and PKC in facilitation of evoked and spontaneous transmitter release at depressed and nondepressed synapses in Aplysia sensory neurons. Neuron 1992;9:479-489.
Un JW, Sugimori M, Llinás RR, McGuinness TL, Greengard P. Effects of synapsin I and calcium-calmodulin-dependent protein kinase I1 on spontaneous neurotransmitter release in the squid giant synapse. Proc Natl Acad Sci 1990;87:8257-8261.
Südhof TC, Jahn R. Proteins of synaptic vesicles involved in exocytosis and membrane recycling. Neuron 1991;6:665-677.
Goda Y. Memory mechanisms. A common cascade for long-term memory. Curr SioI1995;5: 136-138.
Greengard P, Jen J, Narin AC, Stevens CF. Enhancement of glutamate response bycAMP dependent protein kinase in hippocampal neurons. Science 1991;253:1135-1137.
Sailey CH, Sartsch O, Kandel ER. Toward a molecular definition of long-term memory storage. Proc Natl Acad Sci 1996;93:13445-13452.
Iida K, Iwata E, Asanuma M, Asanuma NS, Gómez-Vargas M, Miyazaki I, et al. Effects of repeated cyclosporin A administration on iminodipropionitrile-induced dyskinesia and TRE-/CRE-binding activities in rat brain. Neurosci Res 1998;30:185-193.
Lamprecht R. CREB: a message to remember. Cel/ Mol Life Sci 1999;55:554-563.
Aszódi A, Mül/er U, Friedrich P, Spatz HC. Signal convergence on protein kinase A as a molecular correlate of learning. Proc Natl Acad Sci 1991;88:5832-5836.
Dash PK, Hochner B, Kandel ER. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 1990;345:1718-721.
Micheau J, Riedel G. Protein kinases: wich one is the memory molecule? Cell Mol Life Sci 1999;55:534-548.
Deisseroth K, Bito H, Tsien RW. Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 1996;16:89-101.
Bito H, Oeisseroth K, Tsien RW. CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. CeI/1996;87:1203-1214.
Pearson G, Robinson F, Gibson TB, Xu B-E, Karandikar M, Berman K, et al. Mitogen activated protein (MAP) kinase pathways: regulation and physiological functions. Endoc Rev 2001;22:153-183.
Karpinski BA, Morle GO, Huggenvik J, Uhler MD, Leiden JM. Molecular cloning of human CREB-2: an ATF/CREB transcription factor that can negatively regulate transcription from the cAMP response element. Proc Natl Acad Sci 1992;89:4820-4824.
Yin JCP, Del Vecchio M, Zhou H, Tully T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell 1995;81:107-115.
Barco A, Alarcon JM, Kandel ER. Expression of constitutively active CREB protein facilitates the late fase of long-term potentiation by enhancing synaptic capture. Cell 2002;108:689-703.
Kogan JH, Frankland PW, Blendy JA, Coblentz J, Marowitz Z, Schütz G, et al. Spaced training induces normallong-term memory in CREB mutant mice. Curr BioI 1997;7:1-11.
Metz R, Ziff E. cAMP stimulates the C/EBP-related transcription factor rNFIL-6 to translocate to the nucleus and induce c-fos transcription. Genes & Oev 1991;5:1754-1766.
Rajadhyaksha A, Barczak A, Macías W, Leveque JCh, Lewis SE, Konradi Ch. L-type Ca2+ channels are essential for glutamate-mediated CREB phosphorylation and c-fos gene expression in striatal neurons. J Neurosci 1999;19:6348-6359.
Abel T, Martín KC, Bartsch O, Kandel ER. Memory suppressor genes: inhibi-tory constraints on the storage of long-term memory, Science 1998;279:338-341.
Michael O, Martin CK, Seger R, Ning MM, Baston R, Kandel E. Repeated pulses of serotonin requiered for long-term facilitation activate mitogen-activated protein kinase in sensory. Proc Natl Acad Sci 1998;95:1864-1869.
Greenberg SM, Castellucci VF, Bayley H, Schwartz JH. A molecular mechanism for long term sensitization in Aplysia. Nature 1987;329:62-65.
Hegde AN, Goldberg AL, Schwartz JH. Regulatory subunits of cAMP-dependent protein kinases are degraded after conjugation to ubiquitin: a molecular mechanism underlying long term synaptic plasticity. Proc Natl Acad Sci 1993;90:7436-7440.
Hershko A, Ganoth O, Sudakin V, Oahan A, Cohen LH, Luca FC, et al. Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem 1994;269:4940-4946.
Rechsteiner M. Natural substrates of the ubiquitin proteolytic pathway. Cell 1991;66:615-618.
Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain OG, Martin KC, et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long term facilitation in Aplysia. CeIl1997;89:115-126.
Bailey CH, Chen M. Time course of structural changes at identified sensory neuron synapses during long-term sensitization in Aplysia. J Neurosci 1989;9:1774-1780.
Doherty P, Cohen J, Walsh FS. Neurite outgrowth in response to transfected N-CAM changes during development and is modulated by polysialic acid. Neuron 1990;5:209-219.
Hu Y, Barzilai A, Chen M, Bailey CH, Kandel ER. 5-HT and cAMP induce the formation of coated pits and vesicles and ¡ncrease the expression of clathrin light chain in sensory neurons of Aplysia. Neuron 1993;10:921-929.
Rose SPR. Cell-adhesion molecules, glucocorticoids and long-term-memory formation. Trends Neurosci 1995; 18:502-506.
Bailey CH, Kandel ER. Structural changes and the storage of long-term memory in Aplysia. Canad J Physiol PharmacoI1999;77:738-747.
Rose SPR. Glycoproteins and memory formation. Behav Brain Res 1995:66:73-78.
Kasper C, Rasmussen H, Kastrup JS, Ikemizu S, Jones EY, Berezin V, et al. Structural basis of cell-cell adhesion by NCAM. Nature Struc Biol 2000;7:389-393.
Osten P, Srivastava S, Inman G, Vilim FS, Khatri L, Lee LM, et al. The AMPA receptor GluR2 terminus can mediate a reversible, ATP dependent interaction with NSF and a- and p-SNAPs. Neuron 1998;21:99-110.
Kim CH, Liao D, Lau LF, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 1998;20:683-691.
Noel J, Ralph GS, Pickard L, Williams J, Molnar E, Uney JB, et al. Surface expression of AMPA receptors in hippocampal neurons is regulated by an NSF dependent mechanism. Neuron 1999;23:365-376.
Kim CH, Lisman JE. A labile component of AMPA receptor-mediated synaptic transmission is dependent on microtubule motors, actin, and N-ethylmaleimide-sensitive factor. J Neurosci 2001 ;21 :4188-4194.
Almers W. Synapses. How fast can you get? Nature 1994;367:682-683.
Calakos N, Bennett MK, Peterson KE, Scheller RH. Protein-protein interactions contributing to the specificity of intracellular vesicular trafficking. Science 1994;263:1146-1149.
Byrne JH. Cellular analysis of associative learning. Physiol Rev 1987;67:329-439.
Nazif FA, Byrne JH, Cleary LJ. cAMP induces long-term morphological changes in sensory neurons of Aplysia. Brain Res 1991 ;539:324-327.
Riedel G, Wetzel W, Reymann KG. Comparing the role of metabotropic glutamate receptors in long-term potentiation and in learning and memory. Prog. Neuropsychopharmacol. Biol Psychiat 1996;20:761-788.
Mons N, Guillou JL, Jaffard R. The role Ca2+/calmodulin-stimulable adenylyl cyclase as molecular coincidence detectors in memory formation. Cell Mol Life Sci 1999;55:525-533.
Reymann KG, Brodemann R, Kase H, Matthies H. Inhibitors of calmodulin and protein kinase C block different phases of hippocampal long-term potentiation. Brain Res 1988;461:388-391.
Saitoh T, Schwartz JH. Phosphorylation-dependent subcellular translocation of a Ca2+/Calmodulin-dependent protein kinase produces an autonomous enzyme in Aplysia neurons. J Cell BioI1985;100:835-842.
Vinogradova OS. Hippocampus as comparator: Role of the two input and two output systems of the hippocampus in selection and registration of information. Hippocampus 2001;11:578-598.
Ito I, Hidaka H, Sugiyama H. Effects of KN-62, a specific inhibitor of calcium/calmodulin dependent protein kinase 11, on long-term potentiation in the rat hippocampus. NeurosciLett 1991;121:119-121 .
Martínez JLJr, Derrick BE. Long-term potentiation and learning. Annu Rev Psychol 1996;47: 173-203.
Jeffery KL, Abraham WC, Dragunow M, Mason SE. Induction of Fos-like immunoreactivity and the maintenance of long-term potentiation in the dentate gyrus of unanesthetized rats. Mol Brain Res 1990;8:267-274.
Rison RA, Stanton PK. Long-term potentiation and N-methyl-D-aspartate receptors: foundations of memory and neurologic disease? Neurosci Biobehav Rev 1995;19: 533-552.
Penney JB, Maragos WF, Greenamyre JT, Debowey DL, Hollingsworth Z, Young AB. Excitatory amino acid binding sites in the hippocampal region of Alzheimer's disease and other dementias. J Neurol Neurosurg Psychiatry 1990;53:314-320.
Voronin L, Byzov A, Kleschevnikov A, Kozhemyakin M, Kuhnt U, Volgushev M. Neurophysiological analysis of long-term potentiation in mammalian brain. Behav Brain Res 1995;66:45-52.
Diamond SJ, Bergles ED, Jahr EC. Glutamate release monitored with astrocyte transporter currents during LTP. Neuron 1998;21 :425-433.
Makhinson M, Chotiner KL, Watson BJ, Q'Oell JT. Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca+2/calmodulin-dependent kinase autophosphorylation. J Neurosci 1999; 19:2500-2510.
Malenka RC, Nicoll RA. NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 1993;16:521-527.
Tiunova A, Anokhin K, Rose SP, Mileusnic R. Involvement of glutamate receptors, protein kinases, and protein synthesis in memory for visual discrimination in the young chick. Neurobiol Learn Mem 1998;65:425-433.
Richter-Levin G, Canevari L, Bliss TVP. Long-term potentiation and glutamate release in the dentate gyrus: links to spatial learning. Behav Brain Res 1995;66:37-40.
Malenka RC. Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 1991;6:53-60.
lheng F, Gallagher JP. Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron 1992;9:163-172.
Rickard NS, Ng KT. Blockade of metabotropic glutamate receptors prevents long-term memory consolidation. Brain Res Bull 1995;36:355-359.
Soderling TR. Calcium/calmodulin-dependent protein kinase 11: role in leaming and memory. Mol Cell Biochem 1993;127/128:93-101.
Fujii S, Mikoshiba K, Kuroda Y, Ahmed TM, Kato H. Cooperativity between activation of metabotropic glutamate receptors and NMDA receptors in. the induction of L TP in hippocampal CA 1 neurons. Neurosci Res 2003;46:509-521.
Huang YY, Colley PA, Routtenberg A. Postsynaptic then presynaptic protein kinase C activity may be necessary for long-term potentiation. Neurosci 1992;49:819-827.
McGlade-McCulloh E, Yamamoto H, Tan S-E, Brickey DA, Soderling TR. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II. Nature 1993;362:640-642.
Raymond LA, Blackstone CD, Huganir RL. Phosphorylation and modulation of recombinant GluR6 glutamate receptors by cAMP-dependent protein kinase. Nature 1993;361:637-641.
Tarazi IF, Baldessarini JR. Regional localization of dopamine and ionotropic glutamate receptors subtypes in strial to limbic brain regions. J Neurosci Res 1999;55:401-410.
Bashir ll, Bortolotto ZA, Davies CH, Berretta N, Irving AJ, Seal AJ, et al. Induction of L TP in the hippocampus needs synaptic activation of glutamate metabotropic receptors. Nature 1993;363:347-350.
Hudmon A, Schulman H. Neuronal Ca2+/Calmodulin-dependent protein kinase 11: The role of structure and autoregulation in cellular function. Annu Rev Biochem 2002;71:473-510.
Yasuda H, Barth AL, Stellwagen D, Malenka RC. A developmental switch in the signaling cascades for L TP induction. Nat Neurosci 2003;6:15-16.
Miller SG, Kennedy MB. Regulation of brain type 11 Ca2+/calmodulin dependent protein kinase by autophosphorylation: a Ca2+-triggered molecular switch. CeIl1986;44:861-870.
Barría A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 1997;276:2042-2045.
Soderling TR, Derkach VA. Postsynaptic protein phosphorylation and L TP. TINS 2000;23:75-80.
Strack S, Colbran RJ. Autophosphorylation-dependent targeting of calcium/calmodulin dependent protein kinase 11 by the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 1998;273:20689-20692.
Malenka RC. Long-Term potentiation- A decade of progress? Neurosci 1999;85:1870-1876.
Bayer KU, De Konnick P, Leonard AS, Hell JW, Schulman H. Interaction with the NMDA receptor locks CaMKII in an active conformation. Nature 2001;411:801-805.
Leonard AS, Lim LA, Hemsworth DE, Horne MC, Hell JW. Calcium/calmodulin-dependent protein kinase 11 is associated with the N-methyl-D-aspartate receptor. Proc Natl Acad Sci 1999;96:3239-3244.
Lu W, Man H, Ju W, Trimble WS, Mac Donald JF, Wang YT. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and L TP in cultured hippocampal neurons. Neuron 2001 ;29:243-254.
Piomelli D, Greengard P. Bidirectional control of phospholipase A2 activity by Ca+2/calmodulin-dependent protein kinase 11, cAMP-dependent protein kinase, and casein kinase 11. Proc Natl Acad Sci 1991 ;88:6770-6774.
Opazo P, Watabe AM, Grant SGN, O'Dell TJ. Phosphatidylinositol3-kinase regulates the induction of long-term potentiation through extracellular signal-related kinase-independent mechanisms. J Neurosci 2003;23:3679-3688.
Rameh LE. Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 1999;274:8347-8350.
Hudmon A, Schulman H. Structure-function of the multifunctional Ca2+/Calmodulin-dependent protein kinase 11. Biochem J 2002;364:593-611.
Means RA. Regulatory cascades involving calmodulin-dependent protein kinase. Mol. Endrocrinol 2000; 14:4-13.
Shen K. Meyer T. Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 1999;284:162-166.
Tezuka T. Umemori H. Akiyama T. Nakanishi S, Yamamoto 1. PSD-95 promotes Fyn mediated tyrosine phosphorylation of the N-methyl-D-aspartate receptor subunit NR2A. Proc Natl Acad Sci 1999;96:435-440.
Zheng F. Striker GE. Esposito C, Lupia E, Striker LJ, Gringrich MB, et al. Tyrosine kinase potentiates NMDA receptor current by reducing tonic zinc inhibition. Nat Neurosci 1998;1:185-191.
Fagnou DD, Tuchek JM. The biochemistry of learning and memory. Mol Cell Biochem 1995; 149-150:279-286.
Hudmon A, Aronowski J, Kolb SJ, Waxham MN. Interaction and self-association of Ca2+/Calmodulin-dependent protein kinase 11 during autophosphorylation. J Biol Chem 1996;271 :8800-8808.
Lisman JE, McLntyre ChC. Synaptic plasticity: A molecular memory switch. Curr Biol 2001;11:R788-R791.
Lisman J. The CaM kinase 11 hypothesis for the storage of synaptic memory. Trends Neurosci 1994;17:406-412.
Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. Autophosphorylation at Thr86 of the a calcium-calmodulin kinase 11 in L TP and learning. Science 1998;279:870-873.
Clark KA, Randall AD, Bortolotto ZA, Bashir ZI, Collingridge GL. Mechanisms involved in hippocampal LTP: implications for retrograde messengers. Semin Neurosci 1993;5:189-195.
Kullmann DM, Siegelbaum SA. The site of expression of NMDA receptor-dependent LTP: new fuel for and old tire. Neuron 1995;15:997-1002.
Ascher P, Nowak L. The role of divalent cations in the N-methyl-D-aspartate responses of mouse central neurons in culture. J Physiol1988; 399:247-266.
Huang YY, Colino A, Selig DK, Malenka RC. The influence of prior synaptic activity on the induction of long-term potentiation. Science 1992;255:730-733.
Kauer JA, Malenka RC, Nicoll RA. A persistent postsynaptic modification mediates long-term potentiation in the hippocampus. Neuron 1988;1:911-917.
Wyllie DJA, Manabe T, Nicoll RA. A rise in postsynaptic Ca2+ potentiates miniature excitatory postsynaptic currents and AMPA responses in hippocampal neurons. Neuron 1994;12:127-138.
Kim CH, Chung HJ, Lee HK, Huganir RL. Interactions of the AMPA receptor subunit GluR213 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci 2001;98:11725-11730.
Isaac JRT, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP. Neuron 1995;15:427-434.
Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing induced L TP in CA 1 region of hippocampal slice. Nature 1995;375:400-404.
Hunter T. Protein kinases and phosphatases: The yin and yang of protein phosphorylation and signaling. CeIl1995;80:225-236.
Sistiaga A, Sánchez-Prieto J. Protein phosphatase 1 and 2A Inhibitors prolong the switch in the control of glutamate release by group I metabotropic glutamate receptors. J Neurochem 2000;75:1566-1574.
Strack S, Barban MA, Wadzinski BE, Colbran JR. Oifferential inactivation of postsynaptic density-associated and soluble Ca2+/Calmodulin-dependent protein kinase 11 by protein phosphatases 1 and 2A. J Neurochem 1997;68:2119-2128.
d'Alcantara P, Schiffman SN, Swillens S. Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eu J Neurosci 2003;17:2521-2528.
Westphal RS, Tavalin SJ, Un JM, Alto NM, Fraser IOC, Langeberg LK, et al. Regulation of NMOA receptors by an associated phosphatase-Kinase signaling complex. Science 1999;285:93-96.
Blitzer RO, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R, Landau EM. Gating of CaMKII by cAMP-regulated protein phosphatase activity during L TP. Science 1998;280: 1940-1942.
Chen HX, Otmakhov N, Strack S, Colbran RJ, Usman JE. Is persistent activity of calcium/calmodulin-dependent kinase required for the maintenance of LTP? J Neurophysiol 2001;85: 1368-1376.
Kameyama K, Hey-Kyoung L, Bear FM, Hunganir RL. Involvement of a postsynaptic protein kinase A substrate in the expression of homosynaptic Long-Term Depression. Neuron 1998;21:1163-1175.
Lee HK, Kamewaya K, Huganir RL, Bear MF. NMOA induces long-term synaptic depression and desphosphorylation of the GluR1 subunit of AMPA receptors in hippocampus. Neuron 1998;21:1151-1162.
Levenes C, Herve O, Crepel F. Long-term depression of synaptic transmission in the cerebellum: cellular and molecular mechanisms revisited. Prog NeurobioI1998;55:79-91.
Elgersma Y, Fedorov NB, Ikonen S, Choi ES, EIgersma M, Carvalho OM, Giese KP, Silva AJ. Inhibitory autophosphorylation of CaMKII controls PSD association, plasticity, and learning. Neuron 2002;36:493-505.
Riedel G. If phosphotases go up, memory goes down. Cell Mol Life Sci 1999;55:549-553.
Mulkey RM, Endo S, Shenolikar S, Malenka RC. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 1994;369:486-488.
Sjostrom PJ, Turrigiano GG, Nelson SB. Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 2003;39:641-654.
Weiler IJ, Hawrylak N, Greenough WT. Morphogenesis in memory formation: synaptic and cellular mechanisms. Behav Brain Res 1995;66:1-6.
Jaffrey RS, Snyder HS. NITRIC OXIDE: A neural messenger. Ann Rev Cell Dev Biol 1995;11 :417-440.
Snyder HS, Jaffrey RS, Zakhary R. Nitric oxide and carbon monoxide: parallel roles as neural messengers. Brain Res Rev 1998;26:167-175.
Wu J, Wang Y, Rowan JM, Anwyl R. Evidence for involvement of the cGMP-Protein kinase G signaling system in the induction of Long-Term Depression, but not Long-Term Potentiation, in the dentate gyrus in vitro. J Neurosei 1998;18:3589-3596.
Trivedi B, Kramer RH. Pattermeing reveals the mechanism of long-term suppression of cyclic nucleotides in target neurons. J Neurosci 2002;22:8819-8826.
Moneada S, Palmer RMJ, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-135.
Klann E, Thiels E. Modulation of protein kinases and protein phosphatases by reactíve oxygen speeies: Implieations for hippocampal synaptic plasticity. Prog Neuro Psychiatr Biol Psiehiatr 1999;23:359-376.
Roberson ED, English JD, Sweatt JD. A biochemist's view of long-term potentiation. Learn Mem 1996;3:1-24.
Lu Y, Kandel ER, Hawkins RO. Nitric oxide signaling contributes to late-phase LTP and CREB phosphorylation in the hippocampus. J Neurosci 1999;19:10250-10261.
Marletta MA, Yoon PS, Iyengar R, Leaf CO, Wishnok JS. Macrophage oxidation of L-arginine to nitrite and nitrate: nitric oxide is an intermediate. Biochemistry 1988;27:8706-8711.
Prast H, Philippu A. Nitric oxide as modulator of neuronal function. Prog Neurobiol 2001;64:51-68.
Marletta MA. Nitric oxide: biosynthesis and biological significance. Trends Biol Sci 1989;14:488-492.
Arancio O, Kandel ER, Hawkins RO. Activity-dependent long-term enhancement of transmitter release by presynaptic 3', 5'-cyclic GMP in cultured hippocampal neurons. Nature 1995;376:74-80.
Chang FLF, Greenough WT. Transient and enduring morphological correlates of synaptic activity and efficacy change in the rat hippocampal slice. Brain Res 1984;309:35-46.
Kawada T, Toyosato A, Islam O, Yoshida Y, Imai S. cGMP-kinase mediates cGMP- and cAMP-induced Ca2+ desensitization of skinned rat artery. Eur J PharmacoI1997;323:75-82.
Grasi S, Pettorossi VE. Role of nitric oxide in long-term potentiation of the rat medial vestibular nuclei. Neurosci 2000;101:157-164.
Boulton LC, Irving JA, Potier B, Garthwaite J, Collingridge LG. The nitric oxide-cyclic GMP pathway and synaptic depression in rat hippocampal slices. Eur J Neurosci 1994;6:15281535.
Hartell NA. Inhibition of cGMP breakdown promotes the induction of cerebellar long-term depression. J Neurosci 1996;16:2881-2890.
Jiang H, Shabb JB, Corbin JO. Cross-activation: overriding cAMP/cGMP selectivities of protein kinases in tissues. Biochem Cell BioI1992;70:1283-1289.
Leí S, Jackson FM, Jia Z, Roder J, Bai O, Orser AB, MacOonald FJ. Cyclic GMP-dependent feedback inhibition of AMPA receptors is independent of PKG. Nat Neurosci 2000;3:559-565.
Wang X, Robinson PhJ. Cyclic GMP-dependent protein kinase and cellular signaling in the neurons system. Int Soc Neurochem 1997;68:443-456.
Santschi L, Reyes-Harde M, Stanton PK. Chemical induced, activity-dependent L TO elicited by simultaneous activation of PKG and inhibition of PKA. J Neurophysiol 1999;82:1577-1589.
Shabb JB, Ng L, Corbin JO. One aminoacid change produces a high affinity cGMP-binding site in cAMP-dependent protein kinase. J Biol Chem 1990;265:16031-16034.
Corbin JO, Turko IV, Beasley A, Francis SH. Phosphorylation of phospho-diesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur J Biochem 2000;267:2760-2767.
Schlichter OJ. Cyclic GMP-dependent protein phosphorylation in mammalian cerebellum. Prog Brain Res 1982;56:105-123.
Son H, Lu Y, Zhuo M, Arancio O, Kandel E, Hawkins R. The specific role of cGMP in hippocampal L TP. Learn Mem 1998;5:231-245.
Christopoulos A, EI-Fakahany EE. The generation of nitric oxide by G protein-coupled receptors. Life Sci 1999;64:1-15.
Meriney SO, Gray OB, Pilar GR. Somatostatin-induced inhibition of neuronal Ca2+ current modulated by cGMP-dependent protein kinase. Nature 1994;369:336-339.
Méry P-F, Lohmann SM, Walter U, Fischmeister R. Ca2+ current is regulated by cyclic GMP dependent protein kinase in mammalian cardiac myocytes. Proc Natl Acad Sci 1991;88:1197-1201.
Pineda J, Kogan JH, Aghajanian GK. Nitric oxide and carbon monoxide activate locus coeruleus neurons through a cGMP-dependent protein kinase: involvement of a nonselective cationic channel. J Neurosci 1996;16:1389-1399.
Pfeifer A, Nürnberg B, Kamm S, Uhde M, Schultz G, Ruth P, Hofmann F. Cyclic GMP dependent protein kinase blocks pertussis toxin-sensitive hormone receptor signaling pathways in Chinese hamster ovary cells. J Bjol Chem 1995;270:9052-9059.
Ruth P, Wang GX, Boekhoff I, May B, Pfeifer A, Penner R, et al. Transfected cGMP-dependent protein kinase suppresses calcium transients by inhibition of inositoI1.4,5-trisphosphate production. Proc Natl Acad Sci 1993;90:2623-2627.
Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD. The type 11 isoform of cGMP dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 1995;270:27380-27388.
Beltman J, Sonnenburg WK, Beavo JA. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cel! Biochem 1993;127:239-253.
Detre JA, Nairn AC, Aswad DW, Greengard P. Localization in mammalian brain of G substrate, a specific substrate for guanosine 3',5'-cyclic monophosphate-dependent protein kinase. J Neurosci 1984;4:2843-2849.
Snyder GL, Fisone G, Greengard P. Phosphorylation of DARPP-32 is regulated by GABA in rat striatum and substantia nigra. J Neurochem 1994;63:1766-1771.
Walaas SI, Asward DW, Greengard PA. Dopamine and cyclic AMP regulated phosphoprotein enriched in dopamine innervated brain regions. Nature 1983;301:69-71.
Walaas SI, Greengard P. DARPP-32, a dopamjne and adenosine 3':5'-monophosphate regulated phosphoprotein enriched in dopamine innervated brain regions. 1. Regional and cellular distribution in the rat brain. Neuroscience 1984;4:84-98.
McClelland JL, McNaughton BL, O'Reilly RC. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol Rev 1995;102:419-457.
Masliah E, Col e G, Shimohama S, Hansen L, DeTeresa R, Terry RD, Saitoh T. Differential involvement of protein kinase C isozymes in Alzheimer's disease. J Neurosci 1990;10:2113-2124.
Etcheberrigaray R, Gison GE, Alkon DL. Molecular mechanisms of memory and the pathophysiology of Alzheimer's disease. Ann NY Acad Sci 1994;747:245-255.
Buxbaum JD, Gandy SE, Cicchetti P, Ehrlich ME, CzernikAJ, Fracasso RP, et al. Processing of Alzheimer f3/A4 amyloid precursor protein: modulation by agents that regulate protein phosphorylation. Proc Natl Acad Sci 1990;87:6003-6006.
Furukawa K, Barger SW, Blalock EM, Mattson MP. Activation of K+ channels and suppression of neuronal activity by secreted f3-amyloid-precursor protein. Nature 1996;379:74-78.
SummerWK, Majouski LV, Marsh GM, Tachiki K, Kling A. Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type. N Eng J Med 1986;315:1241-1245.
Mondadori C. In search of the mechanism of action of the No tropics: new insights and potential clinical implications. Life Sci 1994;55:2171-2178.
Mayeux R, Sano M. Treatment of Alzheimer's disease. New Eng J Med 1999;25:1670-1677.
Emilien G, Beyereuther K, Masters C, Maloteaux J-M. Prospects for pharma-cological intervention in Alzheimer's disease. Arch NeuroI2000;57:454-459.
Grutzendler J, Morris JC. Cholinesterase inhibitors for Alzheimer's disease. Drugs 2001;61:41-52.
Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmaco-dynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002;41:719-739.
Cross AJ, Crow TJ, Ferrier IN, Johnson JA, Bloom SR, Corsellis JAN. Serotonin receptor changes in dementia of the Alzheimer's type. J Neurochem 1984;43:1574-1581.
Francis PT. Glutamatergic systems in Alzheimer's disease. Int J Ger Psych 2003;18:S15-S21.
Bleich S, Romer K, Wiltfang J, Kornhuber J. Glutamate and the glutamate receptor system: a target for drug action. Int J Ger Psych 2003;18:S33-S40.
Butterfield DA, Pocernich CB. The glutamatergic system and Alzheimer's disease: therapeutic implications. CNS Drugs 2003;17:641-652.
Jansen KLR, Faull RLM, Oragunow M, Synek BL. Alzheimer's disease: changes in hippocampal N-methyl-O-Aspartate, quisqualate, neurotensin, adenosine, benzodiazepine, serotonin and opioid receptors -An autoradiographic study. Neurosci 1990;39:613-627.
Oewar O, Chalmers OT, Graham DI, McGulloch J. Glutamate metabotropic and AMPA binding sites are reduced in Alzheimer's disease: an autoradiographic study of the hippocampus. Brain Res 1991;553:58-64.
Francis P, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psych 1999;66:137-147.
Ohno M, Frankland PW, Chen AP, Costa RM, Silva AJ. Inducible pharmacogenetic approaches to the study of learning and memory. Nat Neurosci 2001;4:1238-1243.
McGaugh JL, Izquierdo I. The contribution of pharmacology to research on the mechanisms of memory formation. TiPS 2000;21:208-210.
Buccafusco JJ, Terry AVJr. Multiple central nervous system targets for eliciting benefical effects on memory and cognition. Perspect Pharmacol 2000;295:438-446.
Hsu K-S, Huang Ch-Ch, Liang Ych, Wu H-M, Chen Y-L, Lo S-W, Ho W-Ch. Alterations in the balance of protein kinase and phosphatase activities and age-related impairments of synaptic transmission and long-term ppotentiation. Hippocampus 2002;12:787-802.
Siedenman KJ, Steinberg JP, Huganir R, Malinow R. Glutamate receptor subunit 2 serine 880 phosphorylation modulates synaptic transmission and mediates plasticity in CA1 pyramidal cells. J Neurosci 2003;23:9220-2003.