2005, Number 1
<< Back Next >>
Gac Med Mex 2005; 141 (1)
CD1 pathway and NK T cell activation to glycolipid antigens from Mycobacterium tuberculosis.
Sada-Ovalle I, Torre-Bouscoulet L, Jiménez-Martínez MC, Martínez-Cairo S, Zenteno E, Lascurain R
Language: Spanish
References: 73
Page: 35-42
PDF size: 108.56 Kb.
ABSTRACT
The aim of this review is to analyze the current state of our knowledge about cell surface molecules involved in glycolipid antigen presentation, named CD1 family. These proteins constitute a third class of antigen-presenting molecules. CD1 molecules develop diverse important immune functions in host defenses against microbial infections. In recent years these proteins have been involved in the generation of cell-mediated immune response against Mycobacterium tuberculosis. Here, we analyze relevant roles of CD1 proteins and glycolipid antigen-specific T cells.
REFERENCES
World Health Organization. The world health report 1999. Making a difference. Geneva: World Health Organization (1999).
Stenger S, Mazzccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, et al. Differential effects of cytolytic cells subsets on intracellular infection. Science 1997;276:1684-87.
Rosat JP, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol 1999;162:366-71.
Chapman HA. Endosomal proteolisis and class II MHC function. Curr Opin Immunol 1998;10:93-102.
Klein J, Sato A. The HLA system. First of two parts. N Engl J Med 2000;343:702-9.
Klein J, Sato A. The HLA system. Second of two parts. N Engl J Med 2000;343:782-6.
Pamer E, Creswell P. Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 1998;16:323-58.
Schaible UE, Kaufmann SH. CD1 molecules and CD1-dependent T cells in bacterial infections: a link from innate to acquired immunity?. Semin Immunol 2000;12:527-35.
Shamishiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G. Self glycolipids as T-cell autoantigens. Eur J Immunol 1999;29:1667-75.
Moody DB, Porcelli SA. Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 2003;3:11-22.
Yu CY, Milstein C. A physical map linking the five CD1 human thymocyte differentiation antigen genes. EMBO J 1989;8:3727-32.
Albertson DG, Fishpool R, Sherrington P, Nacheva E, Milstein C. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte Cd1 antigen genes to chromosome 1. EMBO J 1988;7:2801-5.
Park SH, Bendelac A. CD1-restricted T cell responses and microbial infection. Nature 2000;406:788-92.
Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev immunol 1999;17:297-329.
Boehm M, Bonofacino JS. Genetic analyses of adaptin function from yeast to mammals. Gene 2002;286:175-86.
Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 2002;16:697-706.
Martin LH, Calabi F, Milstein C. Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci USA 1986;83:9154-8.
Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho D et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for Dc1b presentation. Nature Immunol 2002;3:435-42.
Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 1997;277:339-45.
Gadola SD, Zaccai NR, Harlos K, Sheperd D, Castro-Palomino JC, Ritter G, et al. Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 2002;3:721-6.
Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 1994;372:691-4.
Kaufmann SH. How con immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001;1:20-30.
Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 1995;181:257-70.
Desjardins M, Huber LA, Parton RG, Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 1994;124:677-88.
Russell DG, Dant J, Sturgill-Koszycki S. Mycobacterium-avium and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 1996;156:4764-73.
Armstrong JA, Hart PD. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 1975;142:1-16.
Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, et al. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 1994;153:2568-78.
Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes envolved in the intracellular survival of mycobacteria. Cell 1999;97:435-47.
Clemens DL, Horwitz MA. The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 1996;184:1349-55.
Sturgill-Koszycki S, Schaible UE, Russell DG. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 1996;15:6960-8.
Ortalo-Magne A, Lemassu A, Laneelle MA, Bardou F, Silve G, Gounon P, et al. Identification of the surface-exposed lipids on the cell envelops of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 1996;178:456-61.
Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Frontiers in Bioscience 1998;3:d1253.
Asselineau J, Lanéelle G. Mycobacterial lipids a historical perspective. Frontiers in Bioscience 1998;3:e164-74.
Beatty WL, Rhoades ER; Ullrich HJ, Chatterjee D, Heuser JE, Russell DG. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 2000;1:235-47.
Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Percelli SA, et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 1997;6:187-97.
Dutronc Y, Porcelli SA. The CD1 family and T cell recognition of lipid antigens. Tissue antigens 2002;60:337-53.
Moody DB, Besra GS. Glycolipid targets of CD1-mediated T cell responses. Immunology 2001;104(3):243-51.
Peters PJ, Neefjs JJ, Oorschot V, Ploegh HL, Geuze HJ. Segregation of MHC molecules from MHC class I molecules in the Golgi complex for Transport to lysosomal compartment. Nature 1991;349:669-76.
Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 1996;273:349-52.
Briken V, Moody DB, Porcelli SA. Diversification of CD1 proteins: sampling the lipid content of different cellular compartments. Semin Immunol 2000;12:517-25.
Shamishiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G. Presentation of the same glycolipid by different Cd1 molecules. J Exp Med 2002;195:1013-21.
Schaible UE, Hagens K, Fischer K, Collins HL, Kaufmann SH. Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J Immunol 2000;164:4843-52.
Longley J, Graus J, Alonso M, Edelson R. Molecular cloning of CD1a (T6), a human epidermal dendritic cell marker related to class I MHC molecules. J Invest Dermatol 1989;92:628-31.
Porcelli SA, Morita CT, Brenner MB. CD1b restricts the response of human CD4-CD8- T lymphocytes to a microbial antigen. Nature 1992;360:593-97.
Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 1998;8:331-40.
Melian A, Watts GF, Shamishev A, De Libero G, Caltworthy A, Vincent M, et al. Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with alpha beta TCRs. J Immunol 2000; 165:4494-504.
Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, et al. CD1c-mediated T cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000;404:884-8.
Roberts TJ, Sriram V, Spence PM, Gui M, Hayakawa K, Bacik I, et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment tto NKT cells. J Immunol 2002;168:5409-14.
Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, et al. Natural ligand of mouse CD1d: cellular glycosylphosphatidylinositol. Science 1998;279:1541-4.
Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529-34.
Kang SJ, Cresswell P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J 2002;21:1650-60.
Angenieux C, Salamero J, Fricker D, Cazenave JP, Gound B, Hanau D, et al. Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J Biol Chem 2000;275:37757-64.
Shinkai K, Locksley RM. CD1, tuberculosis, and the evolution of major histocompatibility complex molecules. J Exp Med 2000;191:907-14.
Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 1996;157:2795-803.
Stenger S, Niazi KR, Modlin RL. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 1998;161:3582-8.
Moody DB, Besra GS, Wilson IA, Porcelli SA. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol Rev 1999;172:285-96.
Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 1999;11:743-52.
Vicari AP, Zlotnik A. Mouse NK1.1+ T cells: a new family of T cells. Immunol today 1996;17:71-75.
Fowlkes BJ, Kruisbeek AM, Ton-That H, Weston MA, Coligan JE, Schwarts RH, et al. A novel polulation of T cell receptor alpha beta-bearing thymocytes which predominantly xpresses a single V beta gene family. Nature 1987;329:251-55.
Kronenberg M, Gapin L. The unconventional life style of NKT cells. Nat Rev Immunol 2002;2:557-68.
Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity and function. Annu Rev Immunol 1997;15:535-62.
Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, et al. Cutting Edge: Activation of NK T cells by CD1d and á-Galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373-77.
Hong S, et al. The natural killer T cell ligand á-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med 2001;7:1052-56.
van der Vliet HJ, Nishi N, Koezuka Y, von Blomberg BM, van den Esrtwegh AJ, Porcelli SA, et al. Potent expansion of human natural killer T cells using alpha-galctosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 2001;247:61-72.
Hiromatsu K, Dascher CC, LeClair KP, Sugita M, Furlong ST, Brenner MB, et al. Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 2002;169:330-9.
Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002;61(suppl II):ii54-58.
Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2001;2:569-77.
Romero JF, Eberi G, MacDonald HR, Corradin G. CD1d-restricted NKT cells are dispensable for specific antibody responses and protective immunity against liver-stage malaria infection. Parasite Immunol 2000;164:5005-9.
Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 2000;12:987-94.
Burdin N, Brossay L, Kronenberg M. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014-25.
Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999;163:4647-50.
Lazarevic V, Flynn J. CD8+ T cells in tuberculosis. Am J Respir Crit Care Med 2002;1666:1116-21.
Frassanito MA, Silvestris F, Cafforio P, Dammacco F. CD8+/CD57 cells and apoptosis suppress T cell functions in multiple myeloma. Br J Haematol 1998;100:469-77.