2005, Número 1
<< Anterior Siguiente >>
Gac Med Mex 2005; 141 (1)
La vía de CD1 y la activación de células T NK hacia los antígenos glicolipídicos de Mycobacterium tuberculosis
Sada-Ovalle I, Torre-Bouscoulet L, Jiménez-Martínez MC, Martínez-Cairo S, Zenteno E, Lascurain R
Idioma: Español
Referencias bibliográficas: 73
Paginas: 35-42
Archivo PDF: 108.56 Kb.
RESUMEN
El objetivo de esta revisión es analizar el estado actual de nuestro conocimiento sobre las moléculas de superficie celular involucradas en la presentación de antígenos glicolipídicos, denominadas familia CD1. Estas proteínas constituyen la tercera clase de moléculas presentadoras de antígeno. Las proteínas CD1 controlan diversas funciones inmunes importantes en la defensa del hospedero contra las infecciones microbianas. En años recientes estas proteínas han sido involucradas en la generación de una respuesta inmune celular contra Mycobacterium tuberculosis. Aquí, nosotros analizaremos aspectos relevantes acerca de las proteínas CD1 y las células T específicas para antígenos glicolipídicos.
REFERENCIAS (EN ESTE ARTÍCULO)
World Health Organization. The world health report 1999. Making a difference. Geneva: World Health Organization (1999).
Stenger S, Mazzccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, et al. Differential effects of cytolytic cells subsets on intracellular infection. Science 1997;276:1684-87.
Rosat JP, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ alpha beta T cell pool. J Immunol 1999;162:366-71.
Chapman HA. Endosomal proteolisis and class II MHC function. Curr Opin Immunol 1998;10:93-102.
Klein J, Sato A. The HLA system. First of two parts. N Engl J Med 2000;343:702-9.
Klein J, Sato A. The HLA system. Second of two parts. N Engl J Med 2000;343:782-6.
Pamer E, Creswell P. Mechanisms of MHC class I-restricted antigen processing. Annu Rev Immunol 1998;16:323-58.
Schaible UE, Kaufmann SH. CD1 molecules and CD1-dependent T cells in bacterial infections: a link from innate to acquired immunity?. Semin Immunol 2000;12:527-35.
Shamishiev A, Donda A, Carena I, Mori L, Kappos L, De Libero G. Self glycolipids as T-cell autoantigens. Eur J Immunol 1999;29:1667-75.
Moody DB, Porcelli SA. Intracellular pathways of CD1 antigen presentation. Nat Rev Immunol 2003;3:11-22.
Yu CY, Milstein C. A physical map linking the five CD1 human thymocyte differentiation antigen genes. EMBO J 1989;8:3727-32.
Albertson DG, Fishpool R, Sherrington P, Nacheva E, Milstein C. Sensitive and high resolution in situ hybridization to human chromosomes using biotin labelled probes: assignment of the human thymocyte Cd1 antigen genes to chromosome 1. EMBO J 1988;7:2801-5.
Park SH, Bendelac A. CD1-restricted T cell responses and microbial infection. Nature 2000;406:788-92.
Porcelli SA, Modlin RL. The CD1 system: antigen-presenting molecules for T cell recognition of lipids and glycolipids. Annu Rev immunol 1999;17:297-329.
Boehm M, Bonofacino JS. Genetic analyses of adaptin function from yeast to mammals. Gene 2002;286:175-86.
Sugita M, Cao X, Watts GF, Rogers RA, Bonifacino JS, Brenner MB. Failure of trafficking and antigen presentation by CD1 in AP-3-deficient cells. Immunity 2002;16:697-706.
Martin LH, Calabi F, Milstein C. Isolation of CD1 genes: a family of major histocompatibility complex-related differentiation antigens. Proc Natl Acad Sci USA 1986;83:9154-8.
Moody DB, Briken V, Cheng TY, Roura-Mir C, Guy MR, Geho D et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for Dc1b presentation. Nature Immunol 2002;3:435-42.
Zeng Z, Castano AR, Segelke BW, Stura EA, Peterson PA, Wilson IA. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 1997;277:339-45.
Gadola SD, Zaccai NR, Harlos K, Sheperd D, Castro-Palomino JC, Ritter G, et al. Structure of human CD1b with bound ligands at 2.3 A, a maze for alkyl chains. Nat Immunol 2002;3:721-6.
Beckman EM, Porcelli SA, Morita CT, Behar SM, Furlong ST, Brenner MB. Recognition of a lipid antigen by CD1-restricted alpha beta+ T cells. Nature 1994;372:691-4.
Kaufmann SH. How con immunology contribute to the control of tuberculosis? Nat Rev Immunol 2001;1:20-30.
Clemens DL, Horwitz MA. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J Exp Med 1995;181:257-70.
Desjardins M, Huber LA, Parton RG, Griffiths G. Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 1994;124:677-88.
Russell DG, Dant J, Sturgill-Koszycki S. Mycobacterium-avium and Mycobacterium tuberculosis-containing vacuoles are dynamic, fusion-competent vesicles that are accessible to glycosphingolipids from the host cell plasmalemma. J Immunol 1996;156:4764-73.
Armstrong JA, Hart PD. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med 1975;142:1-16.
Xu S, Cooper A, Sturgill-Koszycki S, van Heyningen T, Chatterjee D, Orme I, et al. Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages. J Immunol 1994;153:2568-78.
Ferrari G, Langen H, Naito M, Pieters J. A coat protein on phagosomes envolved in the intracellular survival of mycobacteria. Cell 1999;97:435-47.
Clemens DL, Horwitz MA. The Mycobacterium tuberculosis phagosome interacts with early endosomes and is accessible to exogenously administered transferrin. J Exp Med 1996;184:1349-55.
Sturgill-Koszycki S, Schaible UE, Russell DG. Mycobacterium-containing phagosomes are accessible to early endosomes and reflect a transitional state in normal phagosome biogenesis. EMBO J 1996;15:6960-8.
Ortalo-Magne A, Lemassu A, Laneelle MA, Bardou F, Silve G, Gounon P, et al. Identification of the surface-exposed lipids on the cell envelops of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol 1996;178:456-61.
Draper P. The outer parts of the mycobacterial envelope as permeability barriers. Frontiers in Bioscience 1998;3:d1253.
Asselineau J, Lanéelle G. Mycobacterial lipids a historical perspective. Frontiers in Bioscience 1998;3:e164-74.
Beatty WL, Rhoades ER; Ullrich HJ, Chatterjee D, Heuser JE, Russell DG. Trafficking and release of mycobacterial lipids from infected macrophages. Traffic 2000;1:235-47.
Prigozy TI, Sieling PA, Clemens D, Stewart PL, Behar SM, Percelli SA, et al. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 1997;6:187-97.
Dutronc Y, Porcelli SA. The CD1 family and T cell recognition of lipid antigens. Tissue antigens 2002;60:337-53.
Moody DB, Besra GS. Glycolipid targets of CD1-mediated T cell responses. Immunology 2001;104(3):243-51.
Peters PJ, Neefjs JJ, Oorschot V, Ploegh HL, Geuze HJ. Segregation of MHC molecules from MHC class I molecules in the Golgi complex for Transport to lysosomal compartment. Nature 1991;349:669-76.
Sugita M, Jackman RM, van Donselaar E, Behar SM, Rogers RA, Peters PJ, et al. Cytoplasmic tail-dependent localization of CD1b antigen-presenting molecules to MIICs. Science 1996;273:349-52.
Briken V, Moody DB, Porcelli SA. Diversification of CD1 proteins: sampling the lipid content of different cellular compartments. Semin Immunol 2000;12:517-25.
Shamishiev A, Gober HJ, Donda A, Mazorra Z, Mori L, De Libero G. Presentation of the same glycolipid by different Cd1 molecules. J Exp Med 2002;195:1013-21.
Schaible UE, Hagens K, Fischer K, Collins HL, Kaufmann SH. Intersection of group I CD1 molecules and mycobacteria in different intracellular compartments of dendritic cells. J Immunol 2000;164:4843-52.
Longley J, Graus J, Alonso M, Edelson R. Molecular cloning of CD1a (T6), a human epidermal dendritic cell marker related to class I MHC molecules. J Invest Dermatol 1989;92:628-31.
Porcelli SA, Morita CT, Brenner MB. CD1b restricts the response of human CD4-CD8- T lymphocytes to a microbial antigen. Nature 1992;360:593-97.
Ernst WA, Maher J, Cho S, Niazi KR, Chatterjee D, Moody DB, et al. Molecular interaction of CD1b with lipoglycan antigens. Immunity 1998;8:331-40.
Melian A, Watts GF, Shamishev A, De Libero G, Caltworthy A, Vincent M, et al. Molecular recognition of human CD1b antigen complexes: evidence for a common pattern of interaction with alpha beta TCRs. J Immunol 2000; 165:4494-504.
Moody DB, Ulrichs T, Muhlecker W, Young DC, Gurcha SS, Grant E, et al. CD1c-mediated T cell recognition of isoprenoid glycolipids in Mycobacterium tuberculosis infection. Nature 2000;404:884-8.
Roberts TJ, Sriram V, Spence PM, Gui M, Hayakawa K, Bacik I, et al. Recycling CD1d1 molecules present endogenous antigens processed in an endocytic compartment tto NKT cells. J Immunol 2002;168:5409-14.
Joyce S, Woods AS, Yewdell JW, Bennink JR, De Silva AD, Boesteanu A, et al. Natural ligand of mouse CD1d: cellular glycosylphosphatidylinositol. Science 1998;279:1541-4.
Spada FM, Koezuka Y, Porcelli SA. CD1d-restricted recognition of synthetic glycolipid antigens by human natural killer T cells. J Exp Med 1998;188:1529-34.
Kang SJ, Cresswell P. Regulation of intracellular trafficking of human CD1d by association with MHC class II molecules. EMBO J 2002;21:1650-60.
Angenieux C, Salamero J, Fricker D, Cazenave JP, Gound B, Hanau D, et al. Characterization of CD1e, a third type of CD1 molecule expressed in dendritic cells. J Biol Chem 2000;275:37757-64.
Shinkai K, Locksley RM. CD1, tuberculosis, and the evolution of major histocompatibility complex molecules. J Exp Med 2000;191:907-14.
Beckman EM, Melian A, Behar SM, Sieling PA, Chatterjee D, Furlong ST, et al. CD1c restricts responses of mycobacteria-specific T cells. Evidence for antigen presentation by a second member of the human CD1 family. J Immunol 1996;157:2795-803.
Stenger S, Niazi KR, Modlin RL. Down-regulation of CD1 on antigen-presenting cells by infection with Mycobacterium tuberculosis. J Immunol 1998;161:3582-8.
Moody DB, Besra GS, Wilson IA, Porcelli SA. The molecular basis of CD1-mediated presentation of lipid antigens. Immunol Rev 1999;172:285-96.
Sugita M, Grant EP, van Donselaar E, Hsu VW, Rogers RA, Peters PJ, et al. Separate pathways for antigen presentation by CD1 molecules. Immunity 1999;11:743-52.
Vicari AP, Zlotnik A. Mouse NK1.1+ T cells: a new family of T cells. Immunol today 1996;17:71-75.
Fowlkes BJ, Kruisbeek AM, Ton-That H, Weston MA, Coligan JE, Schwarts RH, et al. A novel polulation of T cell receptor alpha beta-bearing thymocytes which predominantly xpresses a single V beta gene family. Nature 1987;329:251-55.
Kronenberg M, Gapin L. The unconventional life style of NKT cells. Nat Rev Immunol 2002;2:557-68.
Bendelac A, Rivera MN, Park SH, Roark JH. Mouse CD1-specific NK1 T cells: development, specificity and function. Annu Rev Immunol 1997;15:535-62.
Singh N, Hong S, Scherer DC, Serizawa I, Burdin N, Kronenberg M, et al. Cutting Edge: Activation of NK T cells by CD1d and á-Galactosylceramide directs conventional T cells to the acquisition of a Th2 phenotype. J Immunol 1999;163:2373-77.
Hong S, et al. The natural killer T cell ligand á-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nature Med 2001;7:1052-56.
van der Vliet HJ, Nishi N, Koezuka Y, von Blomberg BM, van den Esrtwegh AJ, Porcelli SA, et al. Potent expansion of human natural killer T cells using alpha-galctosylceramide (KRN7000)-loaded monocyte-derived dendritic cells, cultured in the presence of IL-7 and IL-15. J Immunol Methods 2001;247:61-72.
Hiromatsu K, Dascher CC, LeClair KP, Sugita M, Furlong ST, Brenner MB, et al. Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. J Immunol 2002;169:330-9.
Kaufmann SH. Protection against tuberculosis: cytokines, T cells, and macrophages. Ann Rheum Dis 2002;61(suppl II):ii54-58.
Russell DG. Mycobacterium tuberculosis: here today, and here tomorrow. Nat Rev Mol Cell Biol 2001;2:569-77.
Romero JF, Eberi G, MacDonald HR, Corradin G. CD1d-restricted NKT cells are dispensable for specific antibody responses and protective immunity against liver-stage malaria infection. Parasite Immunol 2000;164:5005-9.
Nishimura T, Kitamura H, Iwakabe K, Yahata T, Ohta A, Sato M, et al. The interface between innate and acquired immunity: glycolipid antigen presentation by CD1d-expressing dendritic cells to NKT cells induces the differentiation of antigen-specific cytotoxic T lymphocytes. Int Immunol 2000;12:987-94.
Burdin N, Brossay L, Kronenberg M. Immunization with alpha-galactosylceramide polarizes CD1-reactive NK T cells towards Th2 cytokine synthesis. Eur J Immunol 1999;29:2014-25.
Carnaud C, Lee D, Donnars O, Park SH, Beavis A, Koezuka Y, Bendelac A. Cutting edge: Cross-talk between cells of the innate immune system: NKT cells rapidly activate NK cells. J Immunol 1999;163:4647-50.
Lazarevic V, Flynn J. CD8+ T cells in tuberculosis. Am J Respir Crit Care Med 2002;1666:1116-21.
Frassanito MA, Silvestris F, Cafforio P, Dammacco F. CD8+/CD57 cells and apoptosis suppress T cell functions in multiple myeloma. Br J Haematol 1998;100:469-77.