2013, Number 4
<< Back Next >>
Rev Cubana Farm 2013; 47 (4)
Effects of policosanol on carrageenan-induced pleurisy and cotton pellet granuloma models
Carbajal QD, Molina CV, Ravelo CY, Pérez GY, Oyarzabal YA, Mas FR
Language: Spanish
References: 32
Page: 492-501
PDF size: 72.81 Kb.
ABSTRACT
Introduction: policosanol, a mixture of higher aliphatic alcohols purified from sugarcane wax, inhibits cyclooxygenase-1 (COX-1) activity
in vitro, an effect that could support its anti-platelet action. Its putative effects on experimental models of inflammation had not been yet investigated.
Objective: to determine the
in vivo effect of policosanol on acute (carrageenaninduced pleurisy) and chronic inflammation (cotton-pellet granuloma)
in vivo models.
Methods: in the acute model, rats were randomly distributed into seven groups: a negative vehicle control, and six with carrageenan-induced pleurisy: a positive control (vehicle), four treated with policosanol (50-800 mg/kg) and one with aspirin (100 mg/kg). Five hours later, volume of pleural exudate, protein concentration and myeloperoxidase activity were quantified. For the chronic model, rats were distributed into six groups: a control (vehicle), four treated with policosanol (50-800 mg/kg) and
one group with aspirin (100 mg/kg). The cotton pellet was implanted and six days after treatment, it was extracted to determine the dry and the wet weights.
Results: single oral doses of policosanol (200, 400 and 800 mg/kg) reduced significantly and moderately the volume (20%), the myeloperoxidase activity (12%) and the protein concentration (20%) in pleural exudates, whereas aspirin 100 mg/kg decreased significantly these indicators by 35.3, 19.9 and 19.1 %, respectively. Oral administration of policosanol (400 and 800 mg/kg) for 6 days reduced significantly and moderately the wet (16.4 and 16.2 %, respectively) and dry (28.4 and 34.4 %, respectively) granuloma weights. Treatment with 100 mg/kg aspirin reduced these variables by 18.5 % (wet weight) and 34.4 % (dry weight), respectively. Both treatments reduced the dry more than the wet granuloma weight.
Conclusion: oral administration of policosanol produced a moderate anti-inflammatory effect
in vivo on models of acute and chronic inflammation.
REFERENCES
Mas R. Policosanol. Drugs Future. 2000;25(6):569-86.
Pérez Y, Mas R, Oyarzábal A, Jiménez S, Molina V. Effects of policosanol (sugar cane wax alcohols) and D-003 (sugarcane wax acids) on cyclooxygenase (COX) enzyme activity in vitro. Curr Top Nutraceut Res. 2012 (en prensa).
Menéndez R, Amor A, Rodeiro I, González RM, Acosta P, Alfonso J, et al. Policosanol modulates HMGCoA reductase activity in cultured fibroblasts. Arch Med Res. 2001;32:8-12.
Dev K, Singh LL, Todd D. Porter Policosanol Inhibits Cholesterol Synthesis in Hepatoma Cells by Activation of AMP-Kinase. JPET. 2006;318:1020-6.
Oliaro-Bosso S, Calcio Gaudino E, Mantegna S, Giraudo E, Meda C, Viola F, et al. Regulation of HMGCoA reductase activity by policosanol and octacosadienol, a new synthetic analogue of octacosanol. Lipids. 2009;44:907-16.
Arruzazabala ML, Molina V, Más R, Fernández L, Carbajal D, Valdés S, et al. Antiplatelet effects of policosanol 20 and 40 mg/d in healthy volunteers and dyslipidemic patients. Clin Exp. Pharmacol. Physiol 2002;29(10):891-7.
Castaño G, Arruzazabala L, Fernández L, Mas R, Carbajal D, Molina V, ET al. Effects of combination treatment with policosanol and omega-3 fatty acids on platelet aggregation. A randomized double-blind clinical study. Cur Therapeutic Res. 2006;67(3):174-92.
Menéndez R, Más R, Amor A, Fernández JC, González RM. Effects of Policosanol on the low density lipoprotein (LDL) isolated on hypercholesterolemic patients at high coronary risk to in vitro copper-mediated lipid peroxidation. Curr Ther Res. 2000;61:609-20.
Oyarzábal A, Molina V, Jiménez S, Curveco D, Mas R. Efectos del policosanol, el extracto de semillas de uva y su terapia combinada sobre marcadores oxidativos en ratas. Rev Cubana Farm. 2010;45(1):87-96.
Noa M, Más R. Effect of Policosanol on atherosclerotic plaque composition on aortas of Macaca arctoides monkeys. Arch Med Res. 2005;36:441-7.
Ferrero-Miliani L, Nielsen OH, Andersen PS, Girardin SE. Chronic inflammation: importance of NOD2 and NALP3 in interleukin-1beta generation. Clin Exp Immunol. 2007;147:227-35.
Gouwy M, Struyf S, Proost P, Van Damme J. Synergy in cytokine and chemokine network amplifies the inflammatory response. Cytokine Growth Factor Rev. 2005;16:561-80.
Wellen KE, Hotamisligil GS. Inflammation, stress and diabetes. J Clin Invest. 2005;115:1111-9.
Ross R, Harker L. Hyperlipidemia and atherosclerosis. Science. 1976;193:1094- 100.
David J. LeferStatins as Potent Antiinflammatory Drugs. Circulation. 2002;106:2041-2.
Quist-Paulsen P. Statins and inflammation: an update. Curr Opin Cardiol. 2010;25(4):399-405.
Moore AR. Pleural models of inflammation: immune and nonimmune. Methods Mol Biol 2003;225:123-8.
Swingle KF, Shideman FE. Phases of the inflammatory response to subcutaneous implantation of a cotton pellet and their modification by certain anti-inflammatory agents. J Pharmacol Exp Ther 1972;183:226-34.
Bailey PJ, Sturm A, Lopez-Ramos B. A biochemical study of the cotton pellet granuloma in the rat. Effects of dexamethasone and indomethacin.Biochem Pharmacol. 1982;31(7):1213-8.
Worthington Biochemical Corporation. Worthington enzyme manual. New Jersey: Worthington Biochemical Corporation; 1972. p. 43-5.
Marxwell MA, Haas SM, Beiber LL, Tolbert NE. A modification of the Lowry procedure to simplify protein determination in membrane lipoprotein samples. Analytical Biochemistry. 1987;87:206-9.
Zakaria NM, Islam MW, Radhakrishnana R, Chen HB, Kamil M, Al-Gifrian AN, et al. Antinociceptive and anti-inflammatory properties of Caralluma arabica. J Ethnopharmacol. 2001;76 :155-8.
Van der Veen BS, de Winther MP, Heeringa P, Augusto O, Chen, JW, Davies M, et al. Myeloperoxidase: molecular mechanisms ofaction and their relevance to human health and disease. Antioxid Redox Signal. 2009;11:2899-937.
Di Paola R, Di Marco R, Mazzon E, Genovese T, Bendtzen K, Macri B, Nicoletti F and Cuzzocrea S. Prevention of carrageenan-induced pleurisy in mice by anti-CD30 ligand monoclonal antibody. Clin Immunol. 2004;113:64-73.
Corsini E, Di Paola R, Viviani B, Genovese T, Mazzo E, Lucchi L, et al. Increased carrageenan-induced acute lung inflammation in old rats. Immunology. 2005;115(2):253-61.
Farias JA, Ferro JN, Silva JP, Agra IK, Oliveira FM, Candea AL, et al. Modulation of inflammatory processes by leaves extract from Clusia nemorosa both in vitro and in vivo animal models. Inflammation. 2011;5(2):764-71.
Moore AR. Pleural models of inflammation: immune and nonimmune. Methods Mol Biol. 2003;225:123-32.
Olajide OA, Awe SO, Makinde JM, Ekhelar AI, Olusola A. Studies on the antiinflammatory , antipyretic and analgesic properties of Alstonia boonei stem bark. J Ethnopharmacol. 2000;71:179-86.
Rajeswari R, Thejomoorthy P, Mathuram LN, Narayana Raju KVS. Anti- Inflammatory Activity Of Cassia fistula Linn. Bark Extracts In Sub-Acute Models of Inflammation In Rats. Tamilnadu J Veterinary & Animal Sci. 2006; 2(5):193-9.
Ramakrishnan G, Joshua JA, Krishna Goudar, Amit A. Comparative Evaluation of Anti-Inflammatory activity of different Extracts of Boswellia serrata in Wistar Albino Rats. Intern J Pharm Tech Res. 2011;3:261-7.
Nakano M, Denda N, Matsumoto M, Kawamura M, Kawakubo Y, Hatanaka K, et al. Interaction between cyclooxygenase (COX)-1- and COX-2-products modulates COX-2 expression in the late phase of acute inflammation. Eur J Pharmacol. 2007;22:210-8.
Marques de Oliveira A, Conserva LM, de Souza Ferro JN, de Almeida Brito F, Lyra Lemos RP, Barreto E. Antinociceptive and anti-Inflammatory effects of octacosanol from the Leaves of Sabicea grisea var. grisea in mice. Int J Mol Sci. 2012;13(2):1598-611.