2013, Number 2
Next >>
Biotecnol Apl 2013; 30 (2)
Factors involved in the design of nasal delivery systems for peptides and proteins
Muñoz-Cernada A, Fernández-Cervera M, García-Rodríguez JC
Language: Spanish
References: 126
Page: 79-96
PDF size: 225.19 Kb.
ABSTRACT
Because the nasal mucous is one of the most permeable areas, the intranasal delivery route is the most promising for proteins and peptides to reach the central nervous system (CNS). Nevertheless certain aspects of these macromolecules limit their bioavailability, such as molecular weight, the rapid mucociliary clearance mechanism and enzymatic degradation. This paper critically summarizes the factors participating in the design of systems for the nasal delivery of peptides and proteins. The physicochemical properties of the biomolecules and features of the formulation design that directly influence their bioavailablity and stability are presented. Pharmaceutical aspects include an analysis of the influence of excipients
that act as stabilizers, antimicrobial preservatives, absorption enhancers, and bioadhesive polymers as well as the administration device. The use of molecules involved in endogenous neuroprotection administered intranasally is a
recent proposal in the development of new drugs. Neurotrophic factors, interferon beta-1b, erythropietin (i.e.: rHEPO, Neuro-EPO) and insulin, are among the biotechnology products administered intranasally. These new products show greater therapeutic potential as putative neuroprotectors in neurological diseases, both for treatment during the acute phase, and for the chronic stage.
REFERENCES
Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1-2):13-38.
Putheti RR, Patil MC, Obire O. Nasal Drug delivery in Pharmaceutical and biotechnology: present and future. Electron J Sci Technol. 2009;4(3):1-21.
Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1-2):1-24.
Bahadur S, Pathak K. Physicochemical and physiological considerations for effi - cient nose-to-brain targeting. Expert Opin Drug Deliv. 2012;9(1):19-31.
Dhuria SV, Hanson LR, Frey WH, 2nd. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4): 1654-73.
Vyas TK, Tiwari SB, Amiji MM. Formulation and physiological factors infl uencing CNS delivery upon intranasal administration. Crit Rev Ther Drug Carrier Syst. 2006; 23(4):319-47.
Duchene D, Ponchel G. Nasal administration: a tool for tomorrow’s systemic administration. Drug Dev Ind Pharm. 1993;19(1-2):101-22.
Dahl R, Mygind N. Anatomy, physiology and function of the nasal cavities in health and disease. Adv Drug Deliv Rev. 1998;29(1-2):3-12.
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1-18.
Arora P, Sharma S, Garg S. Permeability issues in nasal drug delivery. Drug Discov Today. 2002;7(18):967-75.
Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187-95.
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146-57.
Thorne RG, Pronk GJ, Padmanabhan V, Frey WH, 2nd. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481-96.
Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14(1):69-78.
Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117(1):1-14.
Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fi ction? J Drug Target.1998;5(6):415-41.
Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffi ng neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514-6.
Junginger HE, Verhoef JC. Macromolecules as safe penetration enhancers for hydrophilic drugs-a fi ction? Pharmaceut Sci Technol Today. 1998;1(9):370-76.
Illum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release. 2003;87(1-3):187-98.
Banks WA. Are the extracellular [correction of extracelluar] pathways a conduit for the delivery of therapeutics to the brain? Curr Pharm Des. 2004;10(12):1365-70.
Aurora J. Development of Nasal Delivery Systems: A Review [Internet]. Drug Dev Deliv. c2002 [cited 2012 Nov 4];2(7) [about 11 p]. Available from: http:// www.drugdeliverytech.com/ME2/dirmod. asp?sid=&nm=&type=Publishing&mod =Publications%3A%3AArticle&mid=8F3 A7027421841978F18BE895F87F791&t ier=4&id=9EB19EB2F29F462089CE08 1473F5F3CA
Huang Y, Donovan MD. Large molecule and particulate uptake in the nasal cavity: the effect of size on nasal absorption. Adv Drug Deliv Rev. 1998;29(1-2):147-55.
McMartin C, Hutchinson LE, Hyde R, Peters GE. Analysis of structural requirements for the absorption of drugs and macromolecules from the nasal cavity. J Pharm Sci. 1987;76(7):535-40.
Fisher AN, Brown K, Davis SS, Parr GD, Smith DA. The effect of molecular size on the nasal absorption of water-soluble compounds in the albino rat. J Pharm Pharmacol. 1987;39(5):357-62.
Kissel T, Drewe J, Bantle S, Rummelt A, Beglinger C. Tolerability and absorption enhancement of intranasally administered octreotide by sodium taurodihydrofusidate in healthy subjects. Pharm Res. 1992;9(1): 52-7.
MIACALCIN (calcitonin salmon) spray, metered [Internet]. Basel: Novartis International AG. c2012 [cited 2012 Nov 4]. Novartis Pharmaceuticals Corporation; [about 8 screens] . Available from: http:// dailymed.nlm.nih.gov/dailymed/drugInfo. cfm?id=67479
Matsumoto T, Shiraki M, Hagino H, Iinuma H, Nakamura T. Daily nasal spray of hPTH(1-34) for 3 months increases bone mass in osteoporotic subjects: a pilot study. Osteoporos Int. 2006;17(10):1532-8.
Deurloo MJ, Hermens WA, Romeyn SG, Verhoef JC, Merkus FW. Absorption enhancement of intranasally administered insulin by sodium taurodihydrofusidate (STDHF) in rabbits and rats. Pharm Res. 1989;6(10):853-6.
Machida M, Sano K, Arakawa M, Hayashi M, Awazu S. Absorption of recombinant human granulocyte colonystimulating factor (rhG-CSF) from rat nasal mucosa. Pharm Res. 1993;10(9):1372-7.
Bayley D, Temple C, Clay V, Steward A, Lowther N. The transmucosal absorption of recombinant human interferon-alpha B/D hybrid in the rat and rabbit. J Pharm Pharmacol. 1995;47(9):721-4.
Chang N, Hen SJ, Klibanov AM. Protein separation and purifi cation in neat dimethyl sulfoxide. Biochem Biophys Res Commun. 1991;176(3):1462-8.
Chang N, Klibanov AM. Protein chromatography in neat organic solvents. Biotechnol Bioeng. 1992;39(5):575-8.
Illum L, Hinchcliffe M, Davis SS. The effect of blood sampling site and physicochemical characteristics of drugs on bioavailability after nasal administration in the sheep model. Pharm Res. 2003; 20(9):1474-84.
Kimura R, Miwa M, Kato Y, Sato M, Yamada S. Relationship between nasal absorption and physicochemical properties of quaternary ammonium compounds. Arch Int Pharmacodyn Ther. 1991;310:13-21.
Shao Z, Park GB, Krishnamoorthy R, Mitra AK. The physicochemical properties, plasma enzymatic hydrolysis, and nasal absorption of acyclovir and its 2’-ester prodrugs. Pharm Res. 1994;11(2):237- 42.
Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specifi c delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res. 2000;17(8):978-84.
Sakane T, Akizuki M, Yamashita S, Nadai T, Hashida M, Sezaki H. The transport of a drug to the cerebrospinal fl uid directly from the nasal cavity: the relation to the lipophilicity of the drug. Chem Pharm Bull (Tokyo). 1991;39(9):2456-8.
Wang W. Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm. 1999;185(2):129-88.
De Young LR, Dill KA, Fink AL. Aggregation and denaturation of apomyoglobin in aqueous urea solutions. Biochemistry. 1993;32(15):3877-86.
Roefs SP, De Kruif KG. A model for the denaturation and aggregation of beta-lactoglobulin. Eur J Biochem. 1994; 226(3):883-9.
Finke JM, Roy M, Zimm BH, Jennings PA. Aggregation events occur prior to stable intermediate formation during refolding of interleukin 1beta. Biochemistry. 2000;39(3):575-83.
Gokarn YR, Kosky A, Kras E, McAuley A, Remmele, RL Jr. Excipients for protein drugs. In: Katdare A, Chaubal MV, editors. Excipient development for Pharmaceutical, Biotechnology, and Drug Delivery Systems. New York: Informa Healthcare Inc.; 2006. p. 291-332.
Wang W. Protein aggregation and its inhibition in biopharmaceutics. Int J Pharm. 2005;289(1-2):1-30.
Turker S, Onur E, Ozer Y. Nasal route and drug delivery systems. Pharm World Sci. 2004;26(3):137-42.
Song Y, Wang Y, Thakur R, Meidan VM, Michniak B. Mucosal drug delivery: membranes, methodologies, and applications. Crit Rev Ther Drug Carrier Syst. 2004;21(3):195-256.
Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90(3):261-80.
Ishikawa F, Katsura M, Tamai I, Tsuji A. Improved nasal bioavailability of elcatonin by insoluble powder formulation. Int J Pharm. 2001;224(1-2):105-14.
Callens C, Adriaens E, Dierckens K, Remon JP. Toxicological evaluation of a bioadhesive nasal powder containing a starch and Carbopol 974 P on rabbit nasal mucosa and slug mucosa. J Control Release. 2001;76(1-2):81-91.
Cheng YH, Dyer AM, Jabbal-Gill I, Hinchcliffe M, Nankervis R, Smith A, et al. Intranasal delivery of recombinant human growth hormone (somatropin) in sheep using chitosan-based powder formulations. Eur J Pharm Sci. 2005;26(1):9-15.
Matsuyama T, Morita T, Horikiri Y, Yamahara H, Yoshino H. Improved nasal absorption of salmon calcitonin by powdery formulation with N-acetyl-L-cysteine as a mucolytic agent. J Control Release. 2006;115(2):183-8.
D’Souza R, Mutalik S, Venkatesh M, Vidyasagar S, Udupa N. Insulin gel as an alternate to parenteral insulin: formulation, preclinical, and clinical studies. AAPS PharmSciTech. 2005;6(2):E184-9.
Varshosaz J, Sadrai H, Heidari A. Nasal delivery of insulin using bioadhesive chitosan gels. Drug Deliv. 2006;13(1):31-8.
Charlton S, Jones NS, Davis SS, Illum L. Distribution and clearance of bioadhesive formulations from the olfactory region in man: effect of polymer type and nasal delivery device. Eur J Pharm Sci. 2007;30(3-4): 295-302.
Zhao LM, Shi LE, Zhang ZL, Chen JM, Shi DD, Yang J. Preparation and application of chitosan nanoparticles and nanofi bers. Braz J Chem Eng. 2011;28:353-62.
Koping-Hoggard M, Sanchez A, Alonso MJ. Nanoparticles as carriers for nasal vaccine delivery. Expert Rev Vaccines. 2005; 4(2):185-96.
Sharma S, Mukkur TK, Benson HA, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci. 2009;98(3):812-43.
Ozsoy Y, Gungor S, Cevher E. Nasal delivery of high molecular weight drugs. Molecules. 2009;14(9):3754-79.
Vila A, Sanchez A, Janes K, Behrens I, Kissel T, Vila Jato JL, et al. Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Eur J Pharm Biopharm. 2004;57(1):123-31.
Wagner A, Vorauer-Uhl K. Liposome technology for industrial purposes. J Drug Deliv. 2011;591325.
Jain AK, Chalasani KB, Khar RK, Ahmed FJ, Diwan PV. Muco-adhesive multivesicular liposomes as an effective carrier for transmucosal insulin delivery. J Drug Target. 2007;15(6):417-27.
Mainardes RM, Urban MC, Cinto PO, Chaud MV, Evangelista RC, Gremiao MP. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Current Drug Deliv. 2006;3(3):275-85.
Dondeti P, Zia H, Needham TE. Bioadhesive and formulation parameters affecting nasal absorption. Int J Pharm. 1996;115-33.
Pires A, Fortuna A, Alves G, Falcao A. Intranasal drug delivery: how, why and what for? J Pharm Pharm Sci. 2009;12(3): 288-311.
Harris AS, Ohlin M, Lethagen S, Nilsson IM. Effects of concentration and volume on nasal bioavailability and biological response to desmopressin. J Pharm Sci. 1988;77(4):337-9.
Reger MA, Watson GS, Frey WH, 2nd, Baker LD, Cholerton B, Keeling ML, et al. Effects of intranasal insulin on cognition in memory-impaired older adults: modulation by APOE genotype. Neurobiol Aging. 2006;27(3):451-8.
Reger MA, Watson GS, Green PS, Baker LD, Cholerton B, Fishel MA, et al. Intranasal insulin administration dosedependently modulates verbal memory and plasma amyloid-beta in memoryimpaired older adults. J Alzheimers Dis. 2008;13(3):323-31.
Rathbone MJ. Nasal systemic drug delivery. N Z Pharm. 1994;14:37-9.
Pujara CP, Shao Z, Duncan MR, Mitra AK. Effects of formulation variables on nasal epithelial cell integrity: Biochemical evaluations. Int J Pharm. 1995;114(2): 197-203.
Bitter C, Suter-Zimmermann K, Surber C. Nasal drug delivery in humans. Curr Probl Dermatol. 2011;40:20-35.
Bummer PM, Koppenol S. Chemical and physical considerations in protein and peptide stability. In: McNally EJ, editor. Protein formulation and delivery. New York: Marcel Dekker, Inc. 2000; p. 5-69.
Crommelin DJA. Formulation of Biotech Products, including Biopharmaceutical Considerations. In: Crommelin DJA, Sindelar RD, editors. Pharmaceutical Biotechnology: An Introduction for Pharmacists and Pharmaceutical Scientists. London: Taylor and Francis; 2002. p. 73-103.
Bummer PM. Chemical Considerations in Protein and Peptide Stability. In: McNally EJ, Hastedt JE, editors. Protein Formulation and Delivery. 2nd ed. New York: Informa Healthcare USA; 2008. p. 7-42.
Kharenko E, Larionova N, Demina N. Mucoadhesive drug delivery systems. Pharm Chem J. 2009;43(4):200-8.
Boddupalli BM, Mohammed ZN, Nath RA, Banji D. Mucoadhesive drug delivery system: An overview. J Adv Pharm Technol Res. 2010;1(4):381-7.
Khutoryanskiy VV. Advances in mucoadhesion and mucoadhesive polymers. Macromol Biosci. 2011;11(6):748-64.
Shaikh R, Raj Singh TR, Garland MJ, Woolfson AD, Donnelly RF. Mucoadhesive drug delivery systems. J Pharm Bioallied Sci. 2011;3(1):89-100.
Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215-22.
Johnson OL. Formulation of proteins for incorporation into drug delivery systems. In: McNally EJ, editor. Protein formulation and delivery. New York: Marcel Dekker, Inc. 2000; p. 235-56.
Ozsoy Y, Tuncel T, Can A, Akev N, Birteksoz S, Gerceker A. In vivo studies on nasal preparations of ciprofl oxacin hydrochloride. Pharmazie. 2000;55(8):607-9.
Pradhan V, Gaikwad R, Samad A, Prabhakar B. Formulation and evaluation of Almotriptan Malate nasal drops. Indian J Pharm Sci. 2009;71(6):727-9.
Rathnam G, Narayanan N, Ilavarasan R. Carbopol-based gels for nasal delivery of progesterone. AAPS PharmSciTech. 2008;9(4):1078-82.
Ugwoke MI, Agu RU, Vanbilloen H, Baetens J, Augustijns P, Verbeke N, et al. Scintigraphic evaluation in rabbits of nasal drug delivery systems based on carbopol 971p (R)) and carboxymethylcellulose. J Control Release. 2000;68(2):207-14.
Khan S, Patil K, Yeole P, Gaikwad R. Brain targeting studies on buspirone hydrochloride after intranasal administration of mucoadhesive formulation in rats. J Pharm Pharmacol. 2009;61(5):669-75.
Illum L. Nasal clearance in health and disease. J Aerosol Med. 2006;19(1): 92-9.
Charlton ST, Davis SS, Illum L. Evaluation of bioadhesive polymers as delivery systems for nose to brain delivery: in vitro characterisation studies. J Control Release. 2007; 118(2):225-34.
Furubayashi T, Inoue D, Kamaguchi A, Higashi Y, Sakane T. Infl uence of formulation viscosity on drug absorption following nasal application in rats. Drug Metab Pharmacokinet. 2007;22(3):206-11.
Romeo VD, deMeireles JC, Gries WJ, Xia WJ, Sileno AP, Pimplaskar HK, et al. Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv Drug Deliv Rev. 1998;29(1-2):117-33.
Na L, Mao S, Wang J, Sun W. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int J Pharm. 2010;397(1-2):59-66.
Hinchcliffe M, Illum L. Intranasal insulin delivery and therapy. Adv Drug Deliv Rev. 1999;35(2-3):199-234.
Bagger MA, Nielsen HW, Bechgaard E. Nasal bioavailability of peptide T in rabbits: absorption enhancement by sodium glycocholate and glycofurol. Eur J Pharm Sci. 2001;14(1):69-74.
Machida M, Sano K, Arakawa M, Hayashi M, Awazu S. Effects of surfactants and protease inhibitors on nasal absorption of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in rats. Biol Pharm Bull. 1994;17(10):1375-8.
Ekelund K, Osth K, Pahlstorp C, Bjork E, Ulvenlund S, Johansson F. Correlation between epithelial toxicity and surfactant structure as derived from the effects of polyethyleneoxide surfactants on caco-2 cell monolayers and pig nasal mucosa. J Pharm Sci. 2005;94(4):730-44.
Illum L. Nasal drug delivery - recent developments and future prospects. J Control Release. 2012;161(2):254-63.
Schipper NG, Romeijn SG, Verhoef JC, Merkus FW. Nasal insulin delivery with dimethyl-beta-cyclodextrin as an absorption enhancer in rabbits: powder more effective than liquid formulations. Pharm Res. 1993; 10(5):682-6.
Loftsson T, Jarho P, Masson M, Jarvinen T. Cyclodextrins in drug delivery. Expert Opin Drug Deliv. 2005;2(2):335-51.
Matsuyama T, Morita T, Horikiri Y, Yamahara H, Yoshino H. Enhancement of nasal absorption of large molecular weight compounds by combination of mucolytic agent and nonionic surfactant. J Control Release. 2006;110(2):347-52.
Natsume H, Iwata S, Ohtake K, Miyamoto M, Yamaguchi M, Hosoya K, et al. Screening of cationic compounds as an absorption enhancer for nasal drug delivery. Int J Pharm. 1999;185(1):1-12.
Miyamoto M, Natsume H, Satoh I, Ohtake K, Yamaguchi M, Kobayashi D, et al. Effect of poly-L-arginine on the nasal absorption of FITC-dextran of different molecular weights and recombinant human granulocyte colonystimulating factor (rhG-CSF) in rats. Int J Pharm. 2001;226(1-2):127-38.
Chen SC, Eiting K, Cui K, Leonard AK, Morris D, Li CY, et al. Therapeutic utility of a novel tight junction modulating peptide for enhancing intranasal drug delivery. J Pharm Sci. 2006;95(6):1364-71.
Leary AC, Stote RM, Breedt HJ, O’Brien J, Buckley B. Pharmacokinetics and pharmacodynamics of intranasal insulin administered to healthy subjects in escalating doses. Diabetes Technol Ther. 2005;7(1):124-30.
Gill IJ, Fisher AN, Farraj N, Pitt CG, Davis SS, Illum L. Intranasal absorption of granulocyte-colony stimulating factor (G-CSF) from powder formulations, in sheep. Eur J Pharm Sci. 1998;6(1):1-10.
Laursen T, Grandjean B, Jorgensen JO, Christiansen JS. Bioavailability and bioactivity of three different doses of nasal growth hormone (GH) administered to GH-defi cient patients: comparison with intravenous and subcutaneous administration. Eur J Endocrinol. 1996;135(3):309-15.
Sosa I, Cruz J, Santana J, Mengana Y, García-Salman JD, Muñoz A, et al. Paso de la molécula de eritropoyetina humana recombinante con bajo contenido de ácido siálico al sistema nervioso central por la vía intranasal en los modelos del Meriones unguiculatus y el primate no humano Macaca fascicularis. Rev Salud Anim. 2008;30(1):39-44.
Yamamoto A, Morita T, Hashida M, Sezaki H. Effect of absorption promoters on the nasal absorption of drugs with various molecular weights. Int J Pharm. 1993;93(1-3):91-9.
Vidgren MT, Kublik H. Nasal delivery systems and their effect on deposition and absorption. Adv Drug Deliv Rev. 1998;29(1-2): 157-77.
Hughes BL, Allen DL, Dorato MA, Wolff RK. Effect of Delivery Devices on Nasal Deposition and Mucociliary Clearance in Rhesus Monkeys. Aerosol Sci Technol. 1993;18(3):241-49.
Jogani V, Jinturkar K, Vyas T, Misra A. Recent patents review on intranasal administration for CNS drug delivery. Recent Pat Drug Deliv Formul. 2008;2(1):25-40.
Sosa-Teste I. Estudio del efecto neuroprotector de la eritropoyetina humana recombinante con bajo contenido de ácido sialico aplicada por vía intranasal en biomodelos experimentales de isquemia cerebral. Tesis. 2007. Cenpalab.
Sosa I, Mengana Y, García JD, Subiros N, Cruz J, Muñoz A, et al. La eritropoyetina humana recombinante como terapia para la neuroprotección en la isquemia cerebral. Biotecnol Apl. 2008;25(1):1-7.
Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, 2nd, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target. 2010;18(3):179-90.
Hanson LR, Frey WH, 2nd. Strategies for intranasal delivery of therapeutics for the prevention and treatment of neuroAIDS. J Neuroimmune Pharmacol. 2007;2(1):81-6.
Bacigaluppi M, Hermann DM. New targets of neuroprotection in ischemic stroke. Scientifi cWorldJournal. 2008;8:698-712.
Jadhav KR, Gambhire MN, Shaikh IM, Kadam VJ, Pisal SS. Nasal drug delivery system-factors affecting and applications. Curr Drug Ther. 2007;2(1)27-38.
Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH, 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1-2): 66-77.
Valdivia A, Martínez G. La eritropoyetina un neuroprotector potencial. Rev Cubana Farm [Internet]. 2007 [cited 2013 Apr 16];41(2)[about 12 screens]. Available from: http://scielo.sld.cu/scielo.php?pid=S0034- 75152007000200011&script=sci_arttext
Garcia-Rodriguez JC, Sosa-Teste I. The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acute ischemic stroke in humans. Scientifi cWorldJournal. 2009;8:970-81.
Yu YP, Xu QQ, Zhang Q, Zhang WP, Zhang LH, Wei EQ. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett. 2005; 387(1):5-10.
Hermann DM. Nonhematopoietic variants of erythropoietin in ischemic stroke: need for step-wise proof-of-concept studies. Scientifi cWorldJournal. 2010;10:2285-7.
Sosa I, García JC, García JD, Santana J, Subirós N, González C, et al. Intranasal administration of recombinant human erythropoietin exerts neuroprotective effects on post-ischemic brain injury inmongolian gerbils. Pharmacologyonline. 2006;1:100-12.
Lagarto A, Bueno V, Guerra I, Valdes O, Couret M, Lopez R, et al. Absence of hematological side effects in acute and subacute nasal dosing of erythropoietin with a low content of sialic acid. Exp Toxicol Pathol. 2011;63(6):563-7.
Rodriguez CY, Mengana TY, Muñoz- Cernada A, Subiros MN, Gonzalez-Quevedo A, Sosa T, et al. Treatment with nasal neuro- EPO improves the neurological, cognitive, and histological state in a gerbil model of focal ischemia. Scientifi cWorldJournal. 2010; 10:2288-300.
Nuñez-Figueredo Y, Bueno V, Carrillo C, Jimenez N, Valdes O, Muñoz-Cernada A, et al. Efecto neuroprotector de una formulación nasal de eritropoyetina con bajo contenido de ácido siálico. Rev Cubana Farm[Internet]. 2009 [cited 2013 Apr 16];43(1) [about 14 screens]: Available from: http://scielo.sld.cu/ scielo.php?script=sci_arttext&pid=S0034- 75152009000100007
Gao Y, Mengana Y, Cruz YR, Muñoz A, Teste IS, Garcia JD, et al. Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of Neuro- EPO for ischemic insults to the gerbil brain. J Histochem Cytochem. 2011;59(2):214-27.
Muñoz-Cernada A, Garcia-Rodriguez JC, Nuñez-Figueredo Y, García-Selma JD, Sosa- Teste I, et al., inventors; Centro de Investigación y Desarrollo de Medicamentos, assignee. rh- EPO Nasal formulations with low sialic acid concentration for the treatment of diseases of the central nervous system. WIPO Patent Application WO/2007/009404. 2007 Jan 25.
Reger MA, Watson GS, Green PS, Wilkinson CW, Baker LD, Cholerton B, et al. Intranasal insulin improves cognition and modulates beta-amyloid in early AD. Neurology. 2008;70(6):440-8.
Schioth HB, Craft S, Brooks SJ, Frey WH, 2nd, Benedict C. Brain insulin signaling and Alzheimer’s disease: current evidence and future directions. Mol Neurobiol. 2012; 46(1):4-10.