2013, Number 1
<< Back Next >>
Biotecnol Apl 2013; 30 (1)
In vitro regeneration of soybean plants of the Cuban Incasoy-36 variety
Soto N, Ferreira A, Delgado C, Enríquez GA
Language: Spanish
References: 35
Page: 29-33
PDF size: 191.35 Kb.
ABSTRACT
An efficient and reproducible plant regeneration procedure is essential for introducing genes of interest in important
crops through genetic transformation. However, some crops, such as soybean [Glycine max (L.) Merrill], are difficult
to manipulate
in vitro, often depending on their genotype, and the reproduction of the established protocols is not always possible. The purpose of this paper is the optimization of a regeneration protocol for soybean shoots of the Cuban variety Incasoy-36 to enable its reproduction. Cotyledonary nodes of mature seeds were the explants of choice to promote regeneration under specific culture conditions. The effect of several concentrations of benzylaminopurine on shoot induction was evaluated and it was demonstrated that the age of explants is essential for regeneration. Shoot formation was increased with 1.5 mg/L of benzylaminopurine, producing a regeneration frequency of 96.8 % and 4.3 shoots in explants with a 6 day germination period. The elongation of shoots, as well as rooting occurred in an MSB5 medium without hormones. Regenerated plantlets were obtained 7-8 weeks after the start of the culture and they were morphologically similar to plants of this variety.
REFERENCES
Barwale UB, Kerns HR, Widholm JM. Plant regeneration from callus cultures of several soybean genotypes via embryogenesis and organogenesis. Planta. 1986; 167(4):473-81.
Finer JJ, Nagasawa A. Development of an embryogenic suspension culture of soybean (Glycine max Merrill.). Plant Cell Tissue Organ Cult. 1988;15(2):125-36.
Cheng T-Y, Saka H, Voqui-Dinh TH. Plant regeneration from soybean cotyledonary node segments in culture. Plant Sci Lett. 1980;19(2):91-9.
Kaneda Y, Tabei Y, Nishimura S, Harada K, Akihama T, Kitamura K. Combination of thidiazuron and basal media with low salt concentrations increases the frequency of shoot organogenesis in soybeans [Glycine max (L.) Merr.]. Plant Cell Rep. 1997;17(1):8-12.
Kim J, LaMotte CE, Hack E. Plant Regeneration In Vitro from Primary Leaf Nodes of Soybean (Glycine max) Seedlings. J Plant Physiol. 1990;136(6):664-69.
Wright MS, Williams MH, Pierson PE, Carnes MG. Initiation and propagation of Glycine max L. Merr.: Plants from tissuecultured epicotyls. Plant Cell Tissue Organ Cult. 1987;8(1):83-90.
Wright MS, Ward DV, Hinchee MA, Carnes MG, Kaufman RJ. Regeneration of soybean Glycine max L. Merr.) from cultured primary leaf tissue. Plant Cell Rep. 1987;6(2):83-9.
Yang Y-S, Wada K, Futsuhara Y. Comparative studies of organogenesis and plant regeneration in various soybean explants. Plant Sci. 1990;72(1):101-8.
Dan Y, Reichert N. Organogenic regeneration of soybean from hypocotyl explants. In Vitro Cell Dev-Pl. 1998;34(1): 14-21.
Liu H-K, Yang C, Wei Z-M. Effi cient Agrobacterium tumefaciens-mediated transformation of soybeans using an embryonic tip regeneration system. Planta. 2004;219(6):1042-49.
Samoylov VM, Tucker DM, Parrott WA. Soybean [Glycine max (L.) merrill] embryogenic cultures: The role of sucrose and total nitrogen content on proliferation. In Vitro Cell Dev-Pl. 1998;34(1):8-13.
Droste A, Pimentel P, Pasquali G, Mundstock E, Bodanese-Zanettini M. Regeneration of soybean via embryogenic suspension culture. Sci Agric. 2001; 58(4):753-8.
Bueno M, Severin C, Gattuso S, Giubileo G. Inducción de callos embriogénicos en raíces de Soja (Glycine max). Cien Inv Agr. 2004;31(1):13-9.
Hong H, Zhang H, Olhoft P, Hill S, Wiley H, Toren E, et al. Organogenic callus as the target for plant regeneration and transformation via Agrobacterium in soybean (Glycine max (L.) Merr.). In Vitro Cell Dev-Pl. 2007;43(6):558-68.
Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, et al. Production of Transgenic Soybean Plants Using Agrobacterium- Mediated DNA Transfer. Nat Biotechnol. 1988;6(8):915-22.
Staswick PE, Zhang Z, Clemente TE, Specht JE. Effi cient down-regulation of the major vegetative storage protein genes in transgenic soybean does not compromise plant productivity. Plant Physiol. 2001;127(4):1819-26.
Buhr T, Sato S, Ebrahim F, Xing A, Zhou Y, Mathiesen M, et al. Ribozyme termination of RNA transcripts down-regulate seed fatty acid genes in transgenic soybean. Plant J. 2002;30(2):155-63.
Sato S, Xing A, Ye X, Schweiger B, Kinney A, Graef G, et al. Production of linolenic acid and stearidinic acid in seeds of marker-free transgenic soybean. Crop Sci. 2004;44(2):646-52.
Margulies MM. Effect of Chloramphenicol on Light Dependent Development of Seedlings of Phaseolus vulgaris var. Black Valentine, With Particular Reference to Development of Photosynthetic Activity. Plant Physiol. 1962;37(4):473-80.
Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res. 1968;50(1):151-8.
Ma X-H, Wu T-L. Rapid and effi cient regeneration in soybean [Glycine max (L.) Merrill] from whole cotyledonary node explants. Acta Physiol Plant. 2008; 30(2):209-16.
Hammatt N, Davey MR, Nelson RS. Plant regeneration from seedling cotyledons, leaves and petioles of Glycine clandestina. Physiol Plant. 1986;68(1): 125-8.
Sairam RV, Franklin G, Hassel R, Smith B, Meeker K, Kashikar N, et al. A study on the effect of genotypes, plant growth regulators and sugars in promoting plant regeneration via organogenesis from soybean cotyledonary nodal callus. Plant Cell Tissue Organ Cult. 2003;75(1):79-85.
Kim Y, Park T, Kim H, Park H, Chon S, Yun S. Factors affecting organogenesis from mature cotyledon explants and regeneration in Soybean. J Plant Biotechnol. 2004;6(1):39-43.
Malik K, Saxena P. Regeneration in Phaseolus vulgaris L.: high-frequency induction of direct formation in intact seedling by N6-benzylaminopurine and thidiazuron. Planta. 1992;186(3):384-9.
Litz RE, Jarret RL. Regeneración de plantas en el cultivo de tejidos: embriogénesis somática y organogénesis. In: Roca WM, Mroginski LA, editors. Cultivo de tejidos en la agricultura: Fundamentos y aplicaciones. Cali: Centro Internacional de Agricultura Tropical; 1991. p. 143-171.
Alleveldt G, Radler F. Interrelationship between photoperiodic behavior of grapes & growth of plant tissue cultures. Plant Physiol. 1962;37(3):376-9.
Paz MM, Martinez JC, Kalvig AB, Fonger TM, Wang K. Improved cotyledonary node method using an alternative explant derived from mature seed for efficient Agrobacterium-mediated soybean transformation. Plant Cell Rep. 2006;25(3):206-13.
Shan Z, Raemakers K, Tzitzikas EN, Ma Z, Visser RG. Development of a highly effi - cient, repetitive system of organogenesis in soybean (Glycine max (L.) Merr). Plant Cell Rep. 2005;24(9):507-12.
Wright MS, Koehler SM, Hinchee MA, Carnes MG. Plant regeneration by organogenesis in Glycine max. Plant Cell Rep. 1986;5(2):150-54.
Carmen S, Ballester A, Vieitez A. Effect of thidiazuron on multiple shoot induction and plant regeneration from cotyledonary nodes of chestnut. J Hortic Sci Biotechnol. 2001;76(5):588-95.
Brown DCW, Leung DWM, Thorpe TA. Osmotic requirement for shoot formation in tobacco callus. Physiol Plant. 1979;46(1):36-41.
Paz MM, Shou H, Guo Z, Zhang Z, Banerjee AK, Wang K. Assessment of conditions affecting Agrobacteriummediated soybean transformation using the coytyledonary node explant. Euphytica. 2004;136(2):167-9.
Liu ZH, Hsiao IC, Pan YW. Effect of naphthalene acetic acid on endogenous indole-3-acetic acid, peroxidase and auxin oxidase in hypocotyl cutting of soybean during root formation. Bot Bull Acad Sin. 1996;37(4):247-53.
Radhakrishnan R, Ranjithakumari B. Callus induction and plant regeneration of Indian soybean (Glycine max (L.) Merr. cv. CO3) via half seed explant culture. J Agric Technol. 2007;3(2):287-97.