2005, Number 4
<< Back Next >>
Rev Inst Nal Enf Resp Mex 2005; 18 (4)
Molecular mechanisms of the immune response in human pulmonary tuberculosis
Herrera BMT, Torres RM, Juárez CE, Sada DE
Language: Spanish
References: 63
Page: 327-336
PDF size: 126.60 Kb.
ABSTRACT
Human pulmonary tuberculosis is an infectious disease caused by M. tuberculosis;
the protective immune response plays a central role in the control and progression of this disease. The immune response includes the participation of alveolar macrophages, lymphocytes (subsets CD4+, CD8+, NK and gd) and cytokine production such as IL-2, IFN-g, IL-12, IL-18 and TNF-a. Moreover, chemokines like RANTES, MCP-1, MIP-1a and IL-8 play an important role in the chemotaxis of different cell populations at the infection site for the formation of granulomas. This paper provides an overview of the immune mechanisms involved in the cellular immune response in human pulmonary tuberculosis.
REFERENCES
García GML, Giono CS, Pacheco CR, Escobar GA, Valdespino GJL. Tuberculosis en adultos. En: Escobar GA, editor. Enfermedades respiratorias agudas y crónicas. México: INDRE, Secretaría de Salud;1994.p.211-249.
Pacheco CR, Vázquez RV, Badillo V. Vacuna del bacilo Calmette y Guerin (BCG). En: Valdespino GJL, Sepúlveda AJ, editores. Vacunas, ciencia y salud. México: INDRE, Secretaría de Salud;1992.p.187-198.
Global tuberculosis control. WHO Report /HTM/TB/2004.331.
Snider DE, Raviglione M, Kochi A. Global burden of tuberculosis. In: Bloom BR, editor. Tuberculosis. Pathogenesis, protection and control. USA: American Society for Microbiology;1994.p.3-11.
Collins HL, Kaufmann SH. The many faces of host responses to tuberculosis. Immunology 2001;103:1-9.
Vasselon T, Detmers PA. Toll receptors: a central element in innate immune responses. Infect Immun 2002;70:1033-1041.
Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune responses. Nat Immunol 2004; 5:987-995.
Knowles MR, Boucher RC. Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 2002;109:571-577.
Ganz T. Antimicrobial polypeptides in host defense of the respiratory tract. J Clin Invest 2002;109:693-697.
Lopez M, Sly LM, Luu Y, Young D, Cooper H, Reiner NE. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through toll-like receptor-2. J Immunology 2003;170:2409-2416.
Strieter RM, Belperio JA, Keane MP. Cytokines in innate host defense in the lung. J Clin Invest 2002;109: 699-705.
Ferguson JS, Schlesinger LS. Pulmonary surfactant in innate immunity and the pathogenesis of tuberculosis. Tuber Lung Dis 2000;80:173-184.
Ernst JD. Macrophages receptor for Mycobacterium tuberculosis. Infect Immun 1998;66:1277-1281.
Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 1999;17:593-623.
Schluger NW. Recent advances in our understanding of human host responses to tuberculosis. Respir Res 2001;2:157-163.
Flynn JL, Chan J. Immunology of tuberculosis. Annu Rev Immunol 2001;19:93-129.
Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995;13:251-276.
Gately MK, Renzetti LM, Magram J, et al. The interleukin –12/ interleukin-12-receptor system: role in normal and pathologic immune response. Annu Rev Immunol 1998;16:495-521.
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Immunol Rev 2003;3:133-146.
Watford WT, Moriguchi M, Morinobu A, O‘Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev 2003;14:361-368.
Fulton SA, Cross JV, Toossi ZT, Boom WH. Regulation of interleukin-12 by interleukin-10, transforming growth factor-b, tumor necrosis factor-a, and interferon-g in human monocytes infected with Mycobacterium tuberculosis H37Ra. J Infect Dis 1998;178: 1105-1114.
D‘Andrea A, Ma X, Aste-Amezaga M, Paganin C, Trinchieri G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J Exp Med 1995;181:537-546.
Takenaka H, Maruo S, Yamamoto N, et al. Regulation of T cell-dependent and -independent IL-12 production by the three Th2-type cytokines IL-10, IL-6 and IL-4. J Leukoc Biol 1997;61:80-87.
Hochrein H, O’Keeffe M, Luft T, et al. Interleukin-4 (IL-4) is a major regulatory cytokine governing bioactive IL-12 production by mouse and human dendritic cells. J Exp Med 2000;192:823-833.
Marshall JD, Robertson SE, Trinchieri G, Chehimi J. Priming with IL-4 and IL-13 during HIV-1 infection restores in vitro IL-12 production by mononuclear cells of HIV-infected patients. J Immunol 1997;159:5705-5714.
Zhang M, Gately MK, Wang E, et al. Interleukin 12 at the site of disease in tuberculosis. J Clin Invest 1994;93:1733-1739.
Munk ME, Mayer P, Anding P, Feldmann K, Kaufmann SH. Increased numbers of interleukin-12-producing cells in human tuberculosis. Infect Immun 1996;64:1078-1080.
Taha RA, Minshall EM, Olivenstein R, et al. Increased expression of IL-12 receptor mRNA in active pulmonary tuberculosis and sarcoidosis. Am J Respir Crit Care Med 1999;160:1119-1123.
Altare F, Jouanguy E, Lamhamedi S, Doffinger R, Fischer A, Casanova J-L. Mendelian susceptibility to mycobacterial infection in man. Curr Opin Immunol 1998;10:413-417.
Jouanguy E, Doffinger R, Dupuis S, Pallier A, Altare F, Casanova JL. IL-12 and IFN-g in host defense against mycobacteria and salmonella in mice and men. Curr Opin Immunol 1999;11:346-351.
Fieschi C, Casanova JL. The role of interleukin-12 in human infectious diseases: only a faint signature. Eur J Immunol 2003;33:1461-1464.
Fieschi C, Dupuis S, Catherinot E, et al. Low penetrance, broad resistance and favorable outcome of interleukin 12 receptor b1 deficiency: medical and immunological implications. J Exp Med 2003;197:527-535.
Buhtoiarov IN, Lum H, Berke G, Paulnock DM, Sondel PM, Rakhmilevich AL. CD40 ligation activates murine macrophages via an IFN-gamma-dependent mechanism resulting in tumor cell destruction in vitro. J Immunol 2005:174:6013-6022.
Fulton SA, Johnsen JM, Wolf SF, Sieburth DS, Boom WH. Interleukin-12 production by human monocytes infected with Mycobacterium tuberculosis: role of phagocytosis. Infect Immun 1996;64:2523-2531.
Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-g. Annu Rev Immunol 1997;15:749-795.
Sodhi A, Gong J, Silva C, Qian D, Barnes PF. Clinical correlates of interferon-g production in patients with tuberculosis. Clin Infect Dis 1997;25:617-620.
Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-g via aerosol. Lancet 1997;349:1513-1515.
Torres M, Herrera T, Villareal H, Rich EA, Sada E. Cytokine profiles for peripheral blood lymphocytes from patients with active pulmonary tuberculosis and healthy household contacts in response to the 30-kilodalton antigen of Mycobacterium tuberculosis. Infect Immun 1998;66:176-180.
Dupuis S, Doffinger R, Picard C, et al. Human interferon-g-mediated immunity is a genetically controlled continuous trait that determines the outcome of mycobacterial invasion. Immunol Rev 2000;178:129-137.
Holland S, Dorman S, Kwon A, et al. Abnormal regulation of interferon-g, interleukin-12, and tumor necrosis factor-a in human interferon-g receptor 1 deficiency. J Infect Dis 1998:178:1095-1104.
Dorman SE, Holland SM. Mutation in the signal-transducing chain of the interferon-g receptor and susceptibility to mycobacterial infection. J Clin Inv 1998:101:2364-2369.
Nicholson S, Bonecini-Almeida M da G, Lapa e Silva, et al. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J Exp Med 1996;183:2293-2302.
Keane J, Balcewicz-Sablinska MK, Remold HG, et al. Infection by Mycobacterium tuberculosis promotes human alveolar macrophages apoptosis. Infect Immun 1997;65:298-304.
Balcewicz-Sablinska MK, Keane J, Kornfeld H, Remold HG. Pathogenic Mycobacterium tuberculosis evades apoptosis of host macrophages by release of TNF-R2, resulting in inactivation TNF-a. J Immunol 1998;161:2636-2641.
Roberts L, McColl GJ. Tumor necrosis factor inhibitors: risks and benefits in patients with rheumatoid arthritis. Intern Med J 2004;34:687-693.
Dimakou K, Papaioannides D, Latsi P, Katsimboula S, Korantzopoulos P, Orphanidou D. Disseminated tuberculosis complicating anti-TNF-a treatment. Int J Clin Pract 2004;58:1052-1055.
Sadek M, Sada E, Toossi Z, Schwander SK, Rich EA. Chemokines induced by infection of mononuclear phagocytes with mycobacteria and present in lung alveoli during active pulmonary tuberculosis. Am J Respir Cell Mol Biol 1998;19:513-521.
Bermudez LE, Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun 1996;64:1400-1406.
Lin Y, Zhang M, Barnes PE. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect Immun 1998;66: 1121-1126.
Wickremasinghe MI, Thomas LH, Friedland JS. Pulmonary epithelial cells are a source of IL-8 in the response to Mycobacterium tuberculosis: essential role of IL-1 from infected monocytes in a NF-kB-dependent network. J Immunol 1999;163:3936-3947.
Orme IM, Cooper AM. Cytokine/chemokine cascades in immunity to tuberculosis. Immunol Today 1999;20: 307-312.
Tan JS, Canaday DH, Boom WH, Balaji KN, Schwander SK, Rich EA. Human alveolar T lymphocyte responses to Mycobacterium tuberculosis antigens: role for CD4+ and CD8+ cytotoxic T cells and relative resistance of alveolar macrophages to lysis. J Immunol 1997;159:290-297.
Stenger S, Hanson DA, Teitelbaum R, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 1998;282:121-125.
Stenger S, Rosat JP, Bloom BR, Krensky AM, Modlin RL. Granulysin: a lethal weapon of cytolytic T cells. Immunol Today 1999;20:390-394.
Dieli F, Troye-Blomberg M, Ivanyi J, et al. Vg9 / Vd2 T lymphocytes reduce the viability of intracellular Mycobacterium tuberculosis. Eur J Immunol 2000;30:1512-1519.
Li B, Rossman MD, Imir T, et al. Disease-specific changes in gd T cell repertoire and function in patients with pulmonary tuberculosis. J Immunol 1996;157:4222-4229.
Li B, Bassiri H, Rossman MD, et al. Involvement of the Fas/Fas ligand pathway in activation-induced cell death of Mycobacteria-reactive human gd T cells: a mechanism for the loss of gd T cells in patients with pulmonary tuberculosis. J Immunol 1998;161:1558-1567.
Manfredi AA, Heltai S, Rovere P, et al. Mycobacterium tuberculosis exploits the CD95/CD95 ligand system of gd T cells to cause apoptosis. Eur J Immunol 1998;28:1798-1806.
Sciorati C, Rovere P, Ferrarini M, et al. Generation of nitric oxide by the inducible nitric oxide synthase protects gd T cells from Mycobacterium tuberculosis-induced apoptosis. J Immunol 1999;163:1570-1576.
Sturgill-Koszycki S, Schlesinger PH, Chakraborty P, et al. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 1994;263:678-681.
Deretic V, Fratti RA. Mycobacterium tuberculosis phagosome. Mol Microbiol 1999;31:1603-1609.
Olakanmi O, Britigan BE, Schlesinger LS. Gallium disrupts iron metabolism of mycobacteria residing within human macrophages. Infect Immun 2000;68: 5619-5627.
Hmama Z, Gabathuler R, Jefferies WE, de Jong G, Reiner NE. Attenuation of HLA-DR expression by mononuclear phagocytes infected with Mycobacterium tuberculosis is related to intracellular sequestration of immature class II heterodimers. J Immunol 1998;161:4882-4893.