2013, Number 4
<< Back Next >>
Rev Mex Anest 2013; 36 (4)
Mitochondrial function and cardioprotection
Luna-Ortiz P, El-hafidi M, Martínez-Rosas M
Language: Spanish
References: 75
Page: 294-305
PDF size: 290.41 Kb.
ABSTRACT
Mitochondria play an important role in energy metabolism within the cell. Also are known to be intimately involved in the processes that lead to cell death following reperfusion, in both necrotic and apoptotic forms of cell death, and so are potential targets for protective interventions. In this review, we consider several aspect of mitochondrial function that we believe to be possible targets for myocardial protection; namely, roles of the mitochondrial ion channels in the heart with particular emphasis on cardioprotection against ischemia/reperfusion injury, mitochondrial Ca2+ transport, the permeability transition pore, and improved mitochondrial substrate supply. These protective processes are activated by signaling pathways, which converge on mitochondria; these pathways can also be stimulated by pharmacological treatments like some anesthetics with cardioprotective effects. Finally, we describe how improved understanding of the aspects of mitochondrial function may lead to better protective strategies in the future.
REFERENCES
Garlid KD. Cation transport in mitochondria-the potassium cycle. Biochim Biophys Acta. 1996;1275:123-126.
O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;9:420-432.
Halestrap AP. The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and it’s role in the control of mitochondrial metabolis. Biochim Biophys Acta. 1989;973:355-382.
Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q et al. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535-1549.
Chen Q, Vázquez EJ, Moghaddas S et al. Production of reactive oxygen species by mitochondria. J Biol Chem. 2003;278:36027-36031.
Jennings RB, Ganote CE. Mitochondrial structure and function in acute myocardial ischemic injury. Circ Res. 1976;38:80-91.
Turrens JF. Mitochondrial formation of reactive oxygen species. J Physiol. 2003;552:335-344.
Costa AD, Jakob R, Costa CL, Andrukhiv K, West IC et al. The mechanism by which mitoKATP opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem. 2006;281:20801-20808.
Halestrap AP, Clarke SJ, Javadov SA. Mitochondrial permeability transition pore opening during myocardial reperfusion –a target for cardioprotection. Cardiovasc Res. 2004;61:372-385.
Halestrap AP, Pasdois P. The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta. 2009;1787:1402.
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J. 1999;341::233-249.
Piper HM, Abdallah Y, Schäfer C. The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc Res. 2004;61:365-371.
Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res. 2006;70:170-173.
Ruiz MM, Abellán A, Miró CE, García DD. Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol. 2007;102:542-552.
Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabó R. Mitochondrial injury and protection in ischemic pre-and postconditioning. Antioxid Redox Signal. 2011;14:881-891.
Chen Q, Moghaddas S, Hoppel CL et al. Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria. Am J Physiol Cell Physiol. 2008;294:C460-C466.
Petrosillo G, Ruggiero FM, di Venosa N et al. Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin. FASEB J. 2003;17:714-716.
Paradies G, Petrosillo G, Pistolese M et al. Decrease in mitocondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin. Circ Res. 2004;94:53-59.
Crompton M, Costi A, Hayat L. Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J. 1987;245:915-918.
Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995;307:93-98.
Borutaite V, Jekabsone A, Morkuniene R et al. Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia. J Mol Cell Cardiol. 2003;35:357-366.
Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251:5069-5077.
Hunter DR, Haworth RA. The Ca++ induced membrane transition in mitocondria I. The protective mechanisms. Arch Biochem Biophys. 1979;195:453-459.
Zamzami N, Kroemer G. The mitochondrion in apoptosis: how Pandora ’s Box opens. Nat Rev Mol Cell Biol. 2001;2:67-71.
Shoshan-Barmatz V, Keinan N, Zaid H. Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr. 2008;40:183-191.
Suleiman M, Halestrap AP, Griffiths EJ. Mitochondria: a target for myocardial protection. Pharmacol Therap. 2004;6:27-32.
Halestrap AP, Clarke J, Sabzali A, Javadov A. Mitochondrial permeability transition pore opening during myocardial reperfusion: a target for cardioprotection. Cardiovasc Res. 2004;61:372-385.
Xu MF, Wang YG, Hirai K, Ayub A, Ashraf A. Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis. Am J Physiol. 2001;280:H899-H908.
Lim KHH, Modi P, Nicholson E et al. A pig model of warm-blood cardioplegic arrest to investigate the cardioprotective effects of propofol. J Physiol. 2001;536P:82P.
Headrick JP, McKirdy JC, Willis RJ. Functional and metabolic effects of extracellular magnesium in normoxic and ischemic myocardium. Am J Physiol. 1998;275:H917-H929.
Mallet RT. Pyruvate: metabolic protector of cardiac performance. Proc Soc Exp Biol Med. 2000;223:136-148.
Vainio H, Mela L, Chance B. Energy dependent bivalent cation translocation in rat liver mitochondria. Eur J Biochem. 1970;12:387-391.
Denton RM, McCormack JG. Ca2+ as a second messenger within mitochondria of the heart and other tissue. Annu Rev Physiol. 1990;52:451-466.
Balaban RS, Bose S, French SA, Territo PS. Role of calcium in metabolic signaling between cardiac sarcoplasmic reticulum and mitochondria in vitro. Am J Physiol Cell Physiol. 2003;284:C285-C293.
Lamping KA, Christensen CW, Pelc LR, Warltier DC, Gross GJ. Effects of nicorandil and nifedipine on protection of ischemic myocardium. J Cardiovasc Pharmacol. 1984;6:536-542.
Inoue H, Nagase K, Kishi T, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 1991;352:244-247.
Paucek P, Mironova G, Mahdi F, Beavis AD, Woldegiorgis G et al. Reconstitution and partial purification of the glibenclamide-sensitive, ATP-dependent K+ channel from rat liver and beef heart mitochondria. J Biol Chem. 1992;267:26062-26069.
Szewczyk A, Mikolajek B, Pikula S, Nalecz MJ. Potassium channel openers induce mitochondrial matrix volume changes via activation of ATP-sensitive K+ channel. Pol J Pharmacol. 1993;45:437-443.
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbenzio RB et al. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP-sensitive K+ channels: possible mechanism of cardioprotection. Circ Res. 1997;81:1072-1082.
Sato T, Sasaki N, Seharaseyon J, O’Rourke B, Marban E. Selective pharmacological agents implicate mitochondrial but not sarcolemmal K(ATP) channels in ischemic cardioprotection. Circulation. 2000;101:2418-2423.
O’Rourke B. Evidence for mitochondrial K+ channels and their role in cardioprotection. Circ Res. 2004;94:420-432.
Liu Y, Sato T, O’Rourke B, Marbán E. Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation. 1998;97:2463-2469.
Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cel Cardiol. 2000;32:677-695.
Inoue I, Nagase H, Kishi K, Higuti T. ATP-sensitive K+ channel in the mitochondrial inner membrane. Nature 1991;352:244-247.
Szewczyk A, Mikolajek B, Pikula S, Nalecz MJ. Potassium channel opener induce mitochondrial matrix volume changes via activation of ATP sensitive K+ channel. Pol J Pharmacol. 1993;45:437-443.
Garlid KD, Paucek P, Yarov-Yarovoy V, Murray HN, Darbencio RB. Cardioprotective effect of diazoxide and its interaction with mitochondrial ATP sensitive K channels: possible mechanism of cardioprotection. Cir Res. 1997;81:1072-1082.
Grover GJ, Garlid KD. ATP sensitive potassium channels: a review of their cardioprotective pharmacology. J Mol Cel Cardiol. 2000;32:677-695.
Seino S. ATP sensitive potassium channel. Annu Rev Physiol. 1999;61:337-362.
Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F. Ca2+-activated K+ channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun. 1999;257:549-554.
McCully JD. The mitocondrial Katp channel and cardioprotection. Ann Thorac Surg. 2003;75:S667-S673.
Monti F. ATP dependent potasium channel modulation and cardioplegia induced protection of human atria muscle in an in vitro model of myocardial stunning. J Thorac Cardiovasc Surg. 2000;119:842-848.
Xu W, Liu Y, Wang S, McDonald T, van Eyk JE et al. Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science. 2002;298:1029-1033.
Sato T, Saito T, Saegusa N, Nakaya H. Mitochondrial Ca2+-activated K+ channels in cardiac myocytes: a mechanism of the cardioprotective effect and modulation by protein kinase A. Circulation. 2005;11:198-120.
Steiman CM, Storm M. The conservation of mitochondrial function by ischemia-the ischemic paradox. Acta Physiol Scand. 1997;159:171-173.
Marzo I, Brenner C, Zamzami N, Susian SA, Beutner G et al. The permeability transition pore complex: a target for apoptosis regulation by caspases and Bcl-2 related proteins. J Exp Med 1998;187:1261-1271.
Lemaster JJ, Nieminen AL, Qian T, Trost LC, Elmore SP et al. The mitocondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis, and autophagy. Biochim Biophys Acta 1998;1366:177-196.
Figueredo VM, Dresdner KP, Wolney AC, Keller AM. Postischemic reperfusion injury in the isolated rat heart: effect of ruthenium red. Cardiovasc Res. 1991;25:337-342.
Griffiths EJ, Ocampo CJ, Savage RG, Stern MD, Silverman H. Protective effects of low and high doses of cyclosporine a against reoxygenation injury of isolated rat cardiomyocytes: differential effects on mitochondrial calcium. Cel Calcium. 2000;27:87-95.
Chávez E, García N, Pavón N. Inhibición de la transición de la permeabilidad mitocondrial y del daño por reperfusión miocárdica por ciclosporina A. Arch Cardiol Mex. 2007;77:S477-S481.
Bryson HM, Fulton BR, Fauld D. Propofol –an update of its use in anesthesia and conscious sedation. Drugs. 1995;50:513-559.
Murphy PG, Myers DS, Davies WJ, Webster NRJ. The antioxidant potential of propofol. Brit J Anesth. 1992;68:616-618.
Cockshott ID. Propofol, pharmacokinetics and metabolism –an overview. Postgrad Med. 1985;61:45-50.
Javadov SA, Lim KHH, Kerr PM, Suleiman MS, Angelini GD. Protection of heart from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition. Cardiovasc Res. 2000;45:360-369.
Ericksson O. Effects of the general anesthetic propofol on the Ca++ induced permeabilization of rat liver mitochondria. FEBS Lett. 1991;279:45-48.
Sztark F, Ichas F, Ouhabi R, Dabadie P, Mazatt JP. Effects of the anesthetic propofol on the calcium-induced permeability transition of the rat heart mitochondria. FEBS Lett. 1995;368:101-104.
Aldakkak M, Stowe DF, Chen Q, Lefnefsky EJ, Camara AKS. Inhibited mitochondrial respiration by amobarbtal during cardiac ischemia improves redox state and reduces matrix Ca++ overload and ROS release. Cardiovasc Res. 2008;77:406-415.
Obame FN, Zini R, Souktani R, Berdeaux A, Morin D. Peripheral benzodiazepine receptor-induced myocardial protection is mediated by inhibition of mitochondrial membrane permeabilization. JPET. 2007;323:336-345.
Merrill G, McConnell P, Vandyke K, Powell S. Coronary and myocardial effects of acetaminophen: protection during ischemia-reperfusion. Am J Physiol Heart Circ Physiol. 2001;280:H2631-H2638.
Merrill GF, Goldberg E. Antioxidant properties of acetaminophen and cardioprotection. Basic Res Cardiol. 2001;96:423-430.
Golfetti R, Rork T, Merrill G. Chronically administered acetaminophenand the ischemia/reperfused myocardium. Exp Biol Med (Maywood). 2003;228:674-682.
Hadzimichalis NM, Baliga SS, Golfetti R, Jaques KM, Firestein BL et al. Acetaminophen-mediated cardioprotection via inhibition of the mitochondrial permeability transition pore induced apoptotic pathway. Am J Physiol Heart Circ Physiol. 2007;293:H3348-H3355.
Merril GF, Merril JH, Golfetti R, Jaques KM, Hadzichalis NS et al. Antiarrhythmic properties of acetaminophen in the dog. Exp Biol Med. 2007;232:1245-1252.
Merril GF, Rork TH, Spiler NM, Gofetti R. Acetaminophen and myocardial infarction in dogs. Am J Physiol Heart Circ Physiol. 2004;287:H1913-H1920.
Rahman S, Li J, Bopassa JC, Umar S, Iorga A, Partownavid P et al. Phosphorylation of GSK-3β mediates intralipid-induced cardioprotection against ischemia/reperfusion injury. Anesthesiology. 2011;115:242-253.
Li J, Lorga A, Sharma S, Young JY, Parton-Navid R et al. Intralipid, a clinically safe compound, protects the heart against ischemia reperfusion injury more efficiently than cyclosporine A. Anesthesiology. 2012;117:836-846.