2013, Number 6
<< Back Next >>
Rev Med Inst Mex Seguro Soc 2013; 51 (6)
From clinical judgment to linear regression model
Palacios-Cruz L, Pérez M, Rivas-Ruiz R, Talavera JO
Language: Spanish
References: 15
Page: 656-661
PDF size: 146.88 Kb.
ABSTRACT
When we think about mathematical models, such as linear regression
model, we think that these terms are only used by those engaged in
research, a notion that is far from the truth. Legendre described the first
mathematical model in 1805, and Galton introduced the formal term in
1886. Linear regression is one of the most commonly used regression
models in clinical practice. It is useful to predict or show the relationship
between two or more variables as long as the dependent variable
is quantitative and has normal distribution. Stated in another way, the
regression is used to predict a measure based on the knowledge of at
least one other variable. Linear regression has as it’s fi rst objective to
determine the slope or inclination of the regression line:
Y =
a +
bx,
where “a” is the intercept or regression constant and it is equivalent to “Y”
value when “X” equals 0 and “b” (also called slope) indicates the increase
or decrease that occurs when the variable “x” increases or decreases in
one unit. In the regression line, “b” is called regression coeffi cient. The
coeffi cient of determination (R
2) indicates the importance of independent
variables in the outcome.
REFERENCES
Talavera-Piña JO, Antonio-Ocampo A, Castellanos- Olivares A, Wacher-Rodarte NH. Regresión lineal simple. Rev Med IMSS. 1995;33(3):347-51.
Weisberg S. Linear hypothesis: regression (basics). En: Neil JS, Paul BB, editores. International encyclopedia of the social & behavioral sciences. Oxford: Pergamon; 2001. p. 8884-8.
Wikipedia. La Enclopedia Libre. Regresión lineal. [Consultado el 2 de septiembre de 2013]. Disponible en http://es.wikipedia.org/w/index.php?oldid= 67582255.
Lam GK. On the unit of dose equivalent and the linear hypothesis. Health Phys. 1989;57(3):495-6.
Galton F. Regression towards mediocrity in hereditary stature. J Anthropol Inst. 1886;15:246-63.
Galton F. Natural inheritance. London-New York: MacMillan; 1889.
Pearce J. Regression, linear and nonlinear. En: Rob K, Nigel T, editores. International encyclopedia of human geography. Oxford: Elsevier; 2009. p. 302-8.
Canavos GC. Probabilidad y estadística. Aplicaciones y métodos. México: McGraw-Hill; 1988.
Devore JL. Probabilidad y estadística para ingeniería y ciencias. México: International Thomson Editores; 2005.
Dawson P, Trapp R. Bioestadística médica. México: Manual Moderno; 1990. p. 239-365.
Seber GAF. The linear hypothesis: a general theory. London: Griffi n; 1966.
Raftery AE, Madigan D, Hoeting JA. Bayesian model averaging for linear regression models. J Am Stat Assoc. 1997;92(437):179-91.
Hill AB. The environment and disease: association or causation? Proc R Soc Med. 1965;58(5):295-300.
Talavera JO, Rivas-Ruiz R. Investigación clínica IV. Pertinencia de la prueba estadística. Rev Med Inst Mex Seguro Soc. 2011;49(4):401-5.
Talavera JO, Rivas-Ruiz R. Investigación clínica XIV. Del juicio clínico al modelo estadístico. Rev Med Inst Mex Seguro Soc. 2013;51(5):170-5.