2013, Number 3
<< Back Next >>
Rev Cubana Farm 2013; 47 (3)
Genotoxic assessment of the Carapa guianensis Aublet seed oil extract in the chromosomal aberrations assay performed in Balb/c mice
Arencibia ADF, Rosario FLA, Delgado RL, Alonso LA, Infante BJF, Vidal NA
Language: Spanish
References: 33
Page: 363-367
PDF size: 100.86 Kb.
ABSTRACT
Introduction: the oil extract from
Carapa guianensis seed has various biomedical applications. It was recently evaluated and revealed great potentialities as antioxidant in
in vivo assays, but little is known about its effect on DNA in experimental biomodels.
Objective: to evaluate the genotoxic potential of the oil extract from Carapa guianensis seed in the chromosomal aberration of the bone marrow cells test performed in Balb/c mice.
Methods: five experimental groups were created: one placebo group (Tween 65, 2 %), three treated with different extract doses (400, 1000 and 2000 mg/kg) orally administered for 14 days and one positive control group treated with cyclophosphamide at a dose of 50 mg/kg intraperitoneally at 48 and 24 h before euthanasia. Five animals per sex from each group were administered the set dose. After 14 days of treatment, the animals were euthanized through cervical dislocation and their femoral bone marrow was taken out to perform the cytogenetic chromosomal aberration technique.
Results: the results between the control group and the groups treated with the extract did not differ between the two sexes in terms of the mitotic index variables, Gaps, polyploidy cells, number of cells with chromosome and chromatic aberrations and the percentage of aberration cells. However, the results of controls and of treated groups were different from those of the group treated with cyclophosphamide, which proved the validation of our results.
Conclusions: the oil extract from Carapa guianensis seeds does not have genotoxic potential for the formation of chromosome aberrations, mainly structural, in Balb/c mice bone marrow of both sexes.
REFERENCES
Pinto GP. Contribuição ao estudo químico do óleo de Andiroba. Boletín Técnico do Instituto Agronómico do Norte. 1956;31:195-206.
Teske, M, Trentini AM. Herbarium: Compendio de Fitoterapia. Paraná: Herbarium Laboratorio Botánico; 1997. p. 35.
Penido C, Costa KA, Pennaforte RJ, Costa MF, Pereira JF, Siani AC, et al. Anti-allergic effects of natural tetranortriterpenoids isolated from Carapa guianensis Aublet on allergeninduced vascular permeability and hyperalgesia. Inflammation Res. 2005;54:295-303.
Qi S, Wu D, Zhang S, Luo X. Constituent of Carapa guianensis Aubl. (Meliaceae). Pharmazie. 2004;59:488-90.
Penido C, Costa KA, Costa MF, Pereira JF, Siani AC, Henriques MG. Inhibition of allergen-induced eosinophil recruitment by natural tetranortriterpenoids is mediated by the suppression of IL-5, CCL11/eotaxin and NFnB activation. Intern Immunopharmacol. 2006;6:109-21.
Ambrozin A, Leite A, Bueno F, Vieira P, Fernandes JB, Bueno O, et al. Limonoids from andiroba oil and Cedrela fissilis and their insecticidal activity. J Braz Chem Soc. 2006;17(3):542-7.
Ferrari M, Oliveira M, Nakano A, Rocha-Filho P. Determinação do fator de proteção solar (FPS) in vitro e in vivo de emulsões com óleo de andiroba (Carapa guianensis). Rev Bras Farmacogn. 2007;17(4):626-30.
Gonçalves JF, Silva CE, Guimarães DG. Fotossíntese e potencial hídrico foliar de plantas jovens de andiroba submetidas à deficiência hídrica e à reidratação. Pesq Agropec Brás. 2009;44(1):8-14.
Tonini H, Arco M. Morfologia da copa para avaliar o espaço vital de quatro espécies nativas da Amazônia. Pesq Agropec Brás. 2005;40(7):633-8.
Alonso A. Evaluación pre-clínica del extracto oleoso de la semilla de Carapa guianensis como suplemento nutricional antioxidante [tesis]. La Habana: IFAL-UH; 2012. p. 1-58.
Gámez R, Más R. Aspectos generales de los estudios toxicológicos más empleados. Rev CENIC. 2007;38(3):204-8.
Olfert ED, Cross BM, McWilliam DVM, McWilliam AA (Eds.). Canadian Council on Animal Care (CCAC). Guidelines for the use of animals in Psychology. Ottawa: Bradda Printing Services Inc; 1997. p. 155-62.
Arencibia DF, Rosario LA, Morffi J, Curveco D. Estrategias en las evaluaciones genotóxicas. Retel. 2009;23(3):23-40.
Organisation for Economic Co-operation and Development. Genetic Toxicology: in vivo Mammalian Chromosome Aberration Test, in bone. marrow cells. Anexo B11. In: OECD. Guideline for the testing of chemical. Directrices de OCDE TG 475. Paris: OECD Publishing; 1997. p. 5-6.
Costa JH, Lyra M, Lima CR, Arruda VM, Araújo AV, Ribeiro A, et al. A toxicological evaluation of the effect of Carapa guianensis Aublet on pregnancy in Wistar rats. J Ethnopharmacol. 2007;112:122-6.
Costa JH, Lima CR, Silva EJ, Araújo AV, Fraga MC, Ribeiro A, et al. Acute and subacute toxicity of the Carapa guianensis Aublet (Meliaceae) seed oil. J Ethnopharmacol. 2008;116:495-500.
Shayne CG. Animal Models in toxicology. Chapter 2: The Mouse. Toxicology. Second edition. New York Published by Shayne C. Gad and Taylor & Francis Group, LLC; 2007. p. 24-72.
Arencibia DF, Rosario LA, Vidal A. Comparación entre líneas de ratones en el ensayo de aberraciones cromosómicas en médula ósea. Revista MVZ Córdoba. 2012;17(2):2957-63.
Arencibia DF, Gámez R, Gutiérrez A, Mas R, Pardo B, García H, et al. Efectos del D-003, mezcla de ácidos alifáticos en el ensayo de aberraciones cromosómicas in vivo. Rev Cubana Farm. 2010;44(2):213-20.
Arencibia DF, Rosario LA, Suárez YE. Sensibilidad de distintas líneas murinas a la ciclofosfamida medida a través del ensayo de micronúcleos en células de la médula ósea. J Basic Appl Genet. 2011;22(2):125-32.
Prieto G, Errecalde C, Trotti N. Farmacología clínica de los antineoplásicos. Monografía Medicina Veterinaria. 1999;19(1-2):45-65.
Chahoud I, Kuriyama SN, Paumgartten FJ. Maternal protein-and-energy restriction reduces the developmental toxicity of cyclophosphamide and hydroxyuria in rats. Toxicology. 2002;179:137-49.
Yu LJ, Drewers P, Gustafsson K, Brain EG, Hecht JE, Waxman DJ. In vivo modulation of alternative pathways of P-450-catalyzed cyclophosphamide metabolism: impact on pharmacokinetics and antitumor activity. J Pharmacol Exp Ther. 1999;288:928-37.
Gomes MR, De-Oliveira AC, De-Carvalho RR, Araujo IB, Souza CA, Kuriyama SN. Inhibition of cyclophophamide-induced teratogenesis by ionone. Toxicol Letter. 2003;138:205-13.
Shah RM, Izadnegahdar MF, Henh BM, Young AV. In vivo/in vitro studies on the effects of cyclophosphamide on growth and differentiation of hamster palate. Anticancer Drugs. 1996;7:204-12.
Arencibia DF, Rosario LA, Suárez YE, Vidal A. Review about assessment of different murine lines as biomodel in genotoxicity assays by means of cytogenetic methods. Asian J Pharmaceut Biol Res. 2011;1(4):552-62.
Arencibia DF, Rosario LA, Suárez YE, Vidal A, Delgado L. Comparison in the efficiency of different murine lines for genotoxicity assays. Interdisciplinary Toxicology. 2012;5(2):48-58.
Arencibia DF, Rosario LA, Suárez YE, Vidal A. Comparison in the efficiency of different rat lines in the chromosomal aberrations assays. J Experimen Integr Med. 2013;3(1):13-17.
Paz C, Bustamante G, Sánchez M, Leone P. Cytogenetic monitoring in a population occupationally and animals exposed to pesticides in Ecuador. Environ Health Perspect. 2002;110:1077-80.
Preston R, Dean B, Galloway S. Mammalian in vivo Cytogenetic Assays: analysis of Chromosome Aberrations in Bone Marrow Cells. Mutation Res. 1999;189:157-65.
Gutiérrez A, Gámez R, Arencibia DF, Pardo B, García H. Evaluación del potencial genotóxico del D-004, para inducir aberraciones cromosómicas en médula ósea de ratones. Rev CENIC. 2010;41(Especial):1-7.
Ecobichon D. Mutagenesis. The basis of toxicity testing. Boca Ratón, Florida: Mc Gill University, Montreal. De. CRC, INC; 2001. p. 113-36.
EPA. Pesticides and Toxic Substances (7101), Mammalian Bone Marrow Chromosome Aberration Test. United States Government Printing Office Editions. Washington: IRL Press; 1998. p. 3-4.