2013, Número 3
<< Anterior Siguiente >>
Rev Cubana Farm 2013; 47 (3)
Efecto antiproliferativo in vitro de fracciones obtenidas en un extracto de la esponja marina Myrmekioderma gyroderma existente en el mar Caribe
Márquez FD, Márquez FE, Thomas OP, Martínez MA
Idioma: Ingles.
Referencias bibliográficas: 25
Paginas: 368-378
Archivo PDF: 361.66 Kb.
RESUMEN
Introducción: los estudios realizados a esponjas del género Myrmekioderma muestran la presencia de ácidos grasos de fosfolípidos, compuestos volátiles, esteroles, diterpenos cíclicos bioactivos, sesquiterpenos, diterpenos lineales y éteres glicolipídicos.
Objetivo: evaluar el efecto antiproliferativo de siete fracciones (F1-F7) obtenidas por cromatografía en columna instantánea del extracto más activo de la esponja
Myrmekioderma gyroderma, y analizar la composición química de la fracción más activa.
Métodos: se extrajeron las muestras de esponja seca con dos solventes diferentes: CH
2Cl
2 (2 x 50 mL) y CH
3OH (2 x 50 mL). Se evaluó cada fracción en líneas celulares derivadas de células tumorales, y se determinó el crecimiento celular y la viabilidad mediante un ensayo colorimétrico usando sulforhodamina B. Se realizó la identificación de los ácidos grasos de la fracción más activa mediante el análisis por cromatografía de gases acoplada a espectrometría de masas de los derivados ésteres metílicos y pirrolididas.
Resultados: la fracción más activa fue la F4, debido a que inhibió totalmente el crecimiento de las líneas celulares MDA-MB-231 y HT29 a 5 y 25 µg/mL (IC
50‹ 1 µg/mL). Los ácidos grasos identificados se pueden clasificar en los siguientes grupos: saturados de cadena lineal, saturados-ramificados, insaturados y un hidroxiácido. Se identificaron 43 ácidos grasos entre saturados, saturados-ramificados e insaturados en la fracción con mayor actividad sobre las líneas celulares derivadas de cáncer de mama MDA-MB-231, carcinoma de colon HT29 y carcinoma de pulmón A-549.
Conclusiones: los resultados muestran que el efecto inhibitorio del crecimiento de las fracciones sobre las líneas celulares evaluadas depende de la dosis.
REFERENCIAS (EN ESTE ARTÍCULO)
Castellanos L, Zea S, Osorno O, Duque C. Phylogenetic analysis of the order Halichondria (Porifera, Demospongiae), using 3-hydroxysterols as chemical characters. Biochem Systemat Ecol. 2003;31:1163-83.
Genin E, Wielgosz-Collin G, Njinkoué JM, Velosaotsy NE, Kornprobst JM, Gouygou JP, et al. New trends in phospholipid class composition of marine sponges. Comp Biochem Physiol. 2008;B 150:427-31.
Carballeira NM, Reyes ED, Shalabi F. Identification of novel iso/anteiso nonacosadienoic acids from the phospholipids of the sponges Chondrosia remiformis and Myrmekioderma styx. J Nat Prod. 1993;56:1850-5.
Mishra PM, Sree A, Baliarsingh S. Antibacterial study and fatty acid analysis of lipids of the sponge Myrmekioderma granulata. Chem Nat Comp. 2009;45:621-4.
Peng J, Franzblau SG, Zhang F, Hamann MT. Novel sesquiterpenes and a lactone from the Jamaican sponge Myrmekioderma styx. Tetrahedron Lett. 2002;43:9699-702.
Peng J, Avery MA, Hamann MT. Cyanthiwigin AC and AD, two novel diterpene skeletons from the Jamaican sponge Myrmekioderma styx. Organic Lett. 2003;5:4575-8.
Albrizio S, Fattorusso E, Magno S, Mangoni A. Linear diterpenes from the Caribbean sponge, Myrmekioderma styx. J Nat Prod. 1992;55:1287-93.
Letourneux Y, Brunel JM, Fernández R, Dherbomez M, Debitus C. Isolation and characterization of new tetrahydropyranyl substituted sesquiterpene and Myrmekiodermin glycolipid ether isolated from the marine sponge Myrmekioderma. Heterocycl Comm. 2005;11: 291-8.
Aoki S, Higuchi K, Kato A, Murakami N, Kobayashi M. Myrmekiosides A and B, novel mono-O-alkyl-diglycosylglycerols reversing tumor cell morphology of ras-transformed cells from a marine sponge of Myrmekioderma sp. Tetrahedron. 1999;55:14865-70.
Fusetani N, Sugano M, Matsunaga S, Hashimoto K. (+)-Curcuphenol and dehydrocurcuphenol, novel sesquiterpenes which inhibit H,K-ATPase, from a marine sponge Epipolasis sp. Experientia. 1987;43:1234-5.
Gul W, Hammond NL, Yousaf M, Peng J, Holley A, Hamann MT. Chemical transformation and biological studies of marine sesquiterpene (S)-(+)-curcuphenol and its analogs. Biochim Biophys Acta. 2007;1770:1513-9.
Rubinstein LV, Shoemaker RH, Paull KD, Simon RM, Tosini S, Skehan P, et al. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990;82:1113-8.
Boyd MR. The NCI in vitro anticancer drug discovery screen: concept, implementation, and operation, 1985-1995. In: Teicher BA, editor. Anticancer drug development guide; preclinical screening, clinical trials and approval. Totowa: Humana Press; 1997. p. 23-42.
Christie WW. The Lipid Library. [Internet]. The American Oil Chemists Society. 2010. Available from: http://www.lipidlibrary.co.uk
Jakob B, Voss G, Gerlach H. Synthesis of (S)- and (R)-3- hydroxyhexadecanoic acid. Tetrahedron Asymmetry. 1996;7:3255-62.
Andersson BA, Holman RT. Pyrrolidides for mass spectrometric determination of the position of the double bond in monounsaturated fatty acids. Lipids. 1974;9:185-90.
Ryhage R, Stenhagen E. Mass spectrometric studies. VI. Methyl esters of normal chain oxo-, hydroxy-, methoxy- and epoxy-acids. Arkiv Kemi. 1960;15:545-74.
Carballeira NM, Negrón V, Reyes ED. Novel monounsaturated fatty acids from the sponges Amphimedon compressa and Mycale laevis. J Nat Prod. 1992;55:333-9.
Harada H, Yamashita U, Kurihara H, Fukushi E, Kawabata J, Kamei Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002;22:2587-90.
Suzuki H, Yosida TH. Frequency of sister-chromatid exchanges depending on the amount of 5-bromodeoxyuridine incorporated into parental DNA. Mutation Res. 1983;111:277-82.
Oda M, Ueno T, Kasai N, Takahashi H, Yoshida H, Sugawara F, Sakaguchi K, Hayashi H, Mizushina Y. Inhibition of telomerase by linear-chain fatty acids: a structural analysis. Biochem J. 2002;367:329-34.
Mizushina Y, Tanaka N, Yagi H, Kurosawa T, Onoue M, Seto H, et al. Fatty acids selectively inhibit eukaryotic DNA polymerase activities in vitro. Biochim Biophys Acta. 1996;1308:256-62.
Lee HK, Lee DS, Kim J, Kim JS, Im KS, Jung JH. Topoisomerase I inhibitors from the Streptomyces sp. strain KM86-9B isolated from a marine sponge. Arch Pharm Res. 1998:21:729-33.
Jacquot C, McGinley CM, Plata E, Holman TR, van der Donk W. Synthesis of 11-thialinoleic acid and 14-thialinoleic acid, inhibitors of soybean and human lipoxygenases. Org Biomol Chem. 2008;6:4242-52.
Yano I, Ohno Y, Masui M, Kato K, Yabuuchi E, Ohyama A. Occurrence of 2- and 3-hydroxy fatty acids in high concentrations in the extractable and bound lipids of Flavobacterium meningosepticum and Flavobacterium IIb. Lipids. 1976;11:685-8.