2013, Number 1
<< Back Next >>
Rev Endocrinol Nutr 2013; 21 (1)
Nutritional Genomics: Concepts and expectations
Martínez-López E, García-García MR, Campos-Pérez WY, González-Becerra K
Language: Spanish
References: 67
Page: 22-34
PDF size: 410.89 Kb.
ABSTRACT
In the last years, novel research has been launched to identify and understand which dietary components are biologically active and which of the components and drive the development of nutritional genomics. Nutritional genomics is the application of high throughput functional genomics technologies in nutrition research. The application of these technologies will provide knowledge and the usefulness of bioactive food components to design personalized diets for the prevention and management of several complex diseases. Nutritional genomics has two faces: nutrigenomics that studies how nutrients regulate gene expression, and nutrigenetics that studies how people respond to nutrients according their genetic conformation. Bioactive substances in food can affect expression of genes directly or indirectly. Nutrients may: 1) act as ligands for receptors of transcriptional factors, 2) be metabolized by primary or secondary metabolic pathways or 3) affecting signaling pathways. Epigenetics is a field of nutritional genomics that studies the heritable phenotype that result from changes in the chromatin without altering DNA sequence. The epigenetic mechanisms consist post-transciptional modifications of histones (acetylation and deacetylation), DNA methylations and ATP-dependent remodeling complexes. Epigenetic modifications can be provoked by dietary components. In conclusion, research in nutritional genomics will contribute in the development of personalized diets based on individual genotypes, also identifying molecular biomarkers, new bioactive food components and validating the effectiveness of functional food or nutraceuticals.
REFERENCES
Muller M, Kersten S. Nutrigenomics: goals and strategies. Nat Rev Genet. 2003; 4: 315-322.
Elliot R, Jin Ong T. Nutritional genomics. BMJ. 2002; 324: 1438-1442.
Dieck TH, Doring F, Fuchs D, Roth HP, Hannelore D. Transcriptome and proteome analysis identifies the pathways that increase hepatic accumulation in zinc deficients rats. J Nutr. 2005; 135: 199-205.
Jain KK. Applications of biochips: from diagnostics to personalized medicine. Drug Discov Devel. 2004; 7: 285-289.
Blackstock WP, Weir MP. Proteomics quantitative and physical mapping of celular proteins. Trends Biothecnol. 1999; 17: 121-127.
LaBaer J, Ramachandran N. Protein microarrays as tools for functional proteomics. Curr Opin Chem Biol. 2005; 9: 14-19.
Lenz EM, Bright J, Wilson ID, Hughes A, Morrison J, Linderg H, Lockton A. Metabolomics, dietary influences and cultural differences: a 1H NMR-based study of urine samples obtained from healthy British and Swedish subjects. J Pharm Biomed Anal. 2004; 36: 841-849.
Subbiah MT. Understanding the nutrigenomic definitions and concepts at the food-genome junction. OMICS. 2008; 12: 229-235. doi: 10.1089/omi.2008.0033.
Chadwick R. Nutrigenomics, individualism and public health. Proceedings of the Nutrition Society 2004; 63: 161-166.
Kaput J, Rodríguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2003; 16: 166-177.
Kaput J, Perlina A, Hatipoglu B, Bartholomew A, Nikolsky Y. Nutrigenomics: concepts and applications to pharmacogenomics and clinical medicine. Pharmacogenomics. 2007; 8: 369-390. doi 10.2217/14622416.8.4.369
Kaput J. Diet-disease gene interactions. Nutrition. 2004; 20: 26-31.
Ordovas JM, Kaput J, Corella D. Nutrition in the genomics era: Cardiovascular disease risk and the Mediterranean diet Mol Nutr Food Res. 2007; 51: 1293 –1299. doi 10.1002/mnfr.200700041
Jenkins DJA, Kendall CWC, Ransom TPP. Dietary fiber, the evolution of the human diet and coronary heart disease. Nutrition research. 1998; 18: 633-652.
Willett W. Isocaloric diets are of primary interest in experimental and epidemiological studies. Int J Epidemiol. 2002; 31: 694-6955.
Beaglehole R, Horton R. Chronic diseases: global action must match global evidence. The Lancet. 2010; 376: 1619-1621. doi:10.1016/S0140-6736(10)61929-0
Narayan KM, Ali MK, Koplan JP. Global noncommunicable diseases-where worlds meet. N Engl J Med. 2010: 363: 1196-1198. doi: 10.1056/NEJMp1002024
Los alimentos. (n.f.). [fecha de consulta: Septiembre 24 de 2013]. Disponible en: http://alimentos.org.es/ajo
Eastwood MA. A molecular biological basis for the nutrional and pharmacological benefits of dietary plants. QJM. 2001; 94: 45-48.
Clarke SD. Polyunsaturated fatty acid regulation of gene transcription: a mechanism to improve energy balance and insulin resistance. British Journal of Nutrition. 2000; 83: 59-S66. doi: http://dx.doi.org/10.1017/S0007114500000969
Dauncey MJ, White P, Burton KA, Katsumata M. Nutrition-hormone receptor-gene interactions: implications for development and disease. Proc Nutr Soc. 2001; 60: 63-72.
Jacobs MN, Lewis DF. Steroid hormone receptors and dietary ligands: a selected review. Proc Nutr Soc. 2002; 61: 105-122.
DeBusk RM. Nutrigenomics and the Future of Dietetics. Nutrition and Dietetics. The Journal of the Dietitians Association of Australia. 2005; 62: 63-65.
Panduro A. Genómica Nutricional. En: Panduro A. Biología Molecular en la Clínica. México: 2011; 265-272.
Tai ES, Collins D, Robins SJ, O’Connor JJ Jr, Bloomfield HE, Ordovas JM, Schaefer EJ, Brousseau ME. The L162V polymorphism at the peroxisome proliferator activated receptor alpha locus modulates the risk of cardiovascular events associated with insulin resistance and diabetes mellitus: the veterans affairs HDL Intervention Trial (VA-HIT). Atherosclerosis. 2006; 187: 153-60.
Tai ES, Corella D, Demissie S, Cupples LA, Coltell O, Schaefer EJ, Tucker KL, Ordovas JM: Framingham heart study. Polyunsaturated fatty acids interact with the PPARA-L162V polymorphism to affect plasma triglyceride and apolipoprotein C-III concentrations in the Framingham Heart Study. J Nutr. 2005; 135: 397-403.
Tai ES, Demissie S, Cupples LA, Corella D, Wilson PW, Schaefer EJ, Ordovas JM. Association between the PPARA L162V polymorphism and plasma lipid levels: the Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 2002; 22: 805-810.
Kwak JH, Paik JK, Kim OY, Jang Y, Lee SH, Ordovas JM, Lee JH. FADS gene polymorphisms in Koreans: association with w6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis. 2011; 214: 94-100.
Noel SE, Newby PK, Ordovas JM, Tucker KL. Adherence to an (n-3) fatty acid/fish intake pattern is inversely associated with metabolic syndrome among Puerto Rican adults in the Greater Boston area. J Nutr. 2010; 140: 1846-1854.
Kersten S, Desvergne BA, Wahli W. Roles of PPARs in health and disease. Nature. 2000; 405: 421-425.
Corella D, Ordovas JM. Nutrigenomics in cardiovascular medicine. Circ Cardiovasc Genet. 2009; 2: 637-651.
Kaput J, Morine M. Discovery-based nutritional systems biology: developing N-of-1 nutrigenomic research. Int J Vitam Nutr Res. 2012; 82: 333-341.
Nettleton JA, McKeown NM, Kanoni S, Lemaitre RN, Hivert MF, Ngwa J, van Rooij FJ, Sonestedt E, Wojczynski MK, Ye Z, Tanaka T. CHARGE Whole Grain Foods Study Group. Interactions of dietary whole-grain intake with fasting glucose-and insulin-related genetic loci in individuals of European descent: a meta-analysis of 14 cohort studies. Diabetes Care. 2010; 33: 2684-2691.
Ordovás JM, Robertson R, Cléirigh EN. Gene-gene and gene-environment interactions defining lipid-related traits. Curr Opin Lipidol. 2011; 22: 129-136.
Ordovás JM, Smith CE. Epigenetics and cardiovascular disease. Nat Rev Cardiol. 2010; 7: 510-519.
Kussmann M, Krause L, Siffert W. Nutrigenomics: where are we with genetic and epigenetic markers for disposition and susceptibility? Nutr Rev. 2010; 68: S38-47.
Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, Zipursky SL, Darnell J. Estructura molecular de genes y cromosomas. En: Lodish H. Biología celular y molecular. Buenos Aires: 2005; 405-437.
Luque J, Herráez A. Análisis de genes. Detección y aplicaciones de los polimorfimos. En: Texto Ilustrado de Biología Molecular e Ingeniería Genética. España: 2008: 379-388.
Page GP, Edwards JW, Barnes S. A design and statistical perspective on microarray gene expression studies in nutrition: the need for playful creativity and scientific hard-mindedness. Nutrition. 2003; 19: 997-1000.
Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol. 2005; 35: 293-301.
Berger SL, Kouzaride T. An operational definition of epigenetics. Genes and Development. 2009; 23: 781-783.
Marti A, Ordovas J. Epigenetics lights up the obesity field. Obes Facts. 2011; 4: 187-190. DOI:10.1159/000329847
Sharma S, Kelly TK. Epigenetics in cancer. Carcinogenesis. 2010; 358: 27-36.
Fukuda H, Sano N, Muto S, Horikoshi M. Simple histone acetylation plays a complex role in the regulation of gene expression. Brief Func Genomic Proteomic. 2006; 5: 190-208.
Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome. Epigenetics. 2011; 503-518.
Marrero RMT. Metilación y expresión de genes en el cáncer diferenciado de tiroides. Rev Cubana Endocrinol. 2010: 21: 340-350.
Wen WMa, Adjei AA. Novel agents on the horizon for cancer. Therapy Cancer J Clin. 2009; 59: 111-137.
Costello JF, Plass C. Methylation matters. J Med Genet. 2001; 38: 285-303.
Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002; 16: 6-21.
Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, Glatt SJ, Tsuang MT. Methylomics in psychiatry: modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet. 2004; 127B: 51-59.
Chen Y, Sharma RP, Costa RH, Costa E, Grayson DR. On the epigenetic regulation of the human reelin promoter. Nucleic Acids Res. 2002; 30: 2930-2939.
Szyf M. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry. 2005; 70: 533-549.
Felsenfeld G, Groudine M. Controlling the double helix. Nature. 2003; 421: 448-453.
Wade PA. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Human Molecular Genetics. 2001; 10: 693-698.
Ruijter AJ, van Gennip, AH, Caron HN, Stephan K, Andre BP. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003; 370: 737-749.
Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, Gonzalez-Paramas AM. Extraction and isolation of phenolic compounds. Methods Mol Biol. 2012; 864: 427-464.
Gonzalez-Paramas AM, Santos-Buelga C, Duenas M, Gonzalez-Manzano S. Analysis of flavonoids in foods and biological samples. Mini Rev Med Chem. 2011; 11: 1239-1255.
Zhu J, Ghosh A, Coyle EM, Lee J, Hahm ER, Singh SV, Sarkar SN. Differential effects of phenethyl isothiocyanate and D, L-sulforaphane on TLR3 signaling. J Immunol. 2013; 190: 4400-4407.
Zhang C, Su ZY, Khor TO, Shu L, Kong AN. Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation. Biochem Pharmacol. 2013; 85: 1398-1404.
Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA, Chevolleau S, Gasc N, Tulliez J, Tercé F. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Research. 2000; 60: 1426-33.
Hecht SS. Inhibition of carcinogenesis by isothiocyanates. Drugs Metabolism. 2000; 32: 395-411.
Nian H, Delage B, Pinto JT, Daswood RH. Alyll mercaptan, a garlic-derived organosulfur compound, inhibits histone deacetylase and enhances Sp3 binding on the p21WAF1 promoter. Carcinogenesis. 2008; 29: 1816-1824.
Sunga C, Singh S. Bax and Bak are required for apoptosis induction by sulforaphane, a cruciferous vegetable-derived cancer chemopreventive agent. Cancer Res. 2005; 65: 2035-2043.
Dashwood RH, Myzak MC, Ho E. Dietary HDAC inhibitors: time to rethink weak ligands in cancer chemoprevention? Carcinogenesis. 2006; 7: 344-349.
Ordovas JM. Nutrigenetics, plasma lipids, and cardiovascular risk. J Am Diet Assoc. 2006; 106: 1074-1081.
Phillips CM, Goumidi L, Bertrais S, Field MR, Cupples LA, Ordovas JM, McMonagle J, Defoort C, Lovegrove JA et al. ACC2 gene polymorphisms, metabolic syndrome, and gene-nutrient interactions with dietary fat. J Lipid Res. 2010; 51: 3500-3507.
Nutrigenomics Organization NUGO. (n.f.). [Acceso: Septiembre 25 de 2013]. Disponible en: http://www.nugo.org/everyone