2013, Número 1
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2013; 21 (1)
De Hipócrates a la genómica nutricional: Interacción genes-ácidos grasos
García-García MR, Martínez-López É
Idioma: Español
Referencias bibliográficas: 36
Paginas: 35-41
Archivo PDF: 189.30 Kb.
RESUMEN
Es importante reconocer el avance que ha tenido la nutrición como ciencia en los últimos años; esto ha permitido la comprensión de los mecanismos moleculares y celulares que determinan la respuesta del organismo a los estímulos externos, tales como los nutrimentos de la dieta. Un ejemplo que merece especial atención –en relación a cómo los nutrimentos modulan dichas respuestas en el organismo– es la interacción de los ácidos grasos con los genes involucrados en el metabolismo y en la respuesta inflamatoria. A pesar de que la nutrigenómica y la nutrigenética, son sin duda, disciplinas que juegan un papel importante en la práctica clínica para la prevención y el tratamiento de enfermedades crónicas no transmisibles, éstas son áreas de reciente desarrollo en donde aún queda mucho por explorar. El objetivo de esta revisión es reflexionar acerca de la transición que ha sufrido la nutrición en los últimos años y el papel que juegan los ácidos grasos en la genómica nutricional.
REFERENCIAS (EN ESTE ARTÍCULO)
Norheim F, Gjelstad IMF, Hjorth M, Vinknes KJ, Langleite TM, Holen T, Jensen J, Dalen KT, Karlsen AS et al. Molecular nutrition research, the modern way of performing nutritional science. Nutrients. 2012; 4: 1898-1944. doi:10.3390/nu4121898.
Kaufer-Horwitz M. La nutrición en México en los albores del siglo XXI. En: Casanueva E. Nutriología médica. México, D.F.: Editorial Médica Panamericana. 2001; 284-310.
Kathleen Mahan L, Escott-Stump S. Nutrición y dietoterapia de Krause. St Louis, Missouri: Saunders Elsevier; 2008.
Hipócrates y los inicios de la medicina. 2009 [Fecha de acceso: 12 de agosto de 2013]. Disponible en: http://www2.fe.ccoo.es/andalucia/docu/p5sd6380.pdf
Shils ME, Olson JA, Shike M, Ross CA. Nutrición en salud y enfermedad de Shils. E.U.: Mc Graw Hill; 2002.
Del Olmo D, Alcázar V, López Del Val T. Nutrición basada en la evidencia: presente, limitaciones y futuro. Endocrinology Nutrition. 2005; 52: 2-7.
Marti A, Moreno-Aliaga J, Zulet A, Martínez JA. Avances en nutrición molecular: nutrigenómica y/o nutrigenética. Nutrición Hospitalaria. 2005; 20: 157-164.
Martínez-López E, García-García MR, Panduro A. Genómica Nutricional. In: Panduro A. Biología molecular en la clínica.México, D.F.: 2011; 265-272.
Ordovas JM. Nutrigenetics, plasma lipids, and cardiovascular risk. J Am Diet Assoc. 2006; 106: 1074-81.
Afman L, Muller M. Nutrigenomics: from molecular nutrition to prevention of disease. J Am Diet Assoc. 2006; 106: 569–76.
Miyamoto K, Ushijima T. Diagnostic and therapeutic applications of epigenetics. Jpn J Clin Oncol. 2005; 35: 293-301.
Davis CD, Milner JA. Nutrigenomics, vitamin d and cancer prevention. J Nutrigenet Nutrigenomics. 2011; 4: 1–11.
Neeha VS, Kinth P. Nutrigenomics research: A review. J Food Sci and Technol. 2013; 50: 415-428.
Azrad M, Turgeon C, Demark-Wahnefried W. Current evidence linking polyunsaturated fatty acids with cancer risk and progression. Front Oncology. 2013; 4: 224. doi:10.3389/fonc.2013.00224.
Suganami T, Tanaka M, Ogawa Y. Adipose tissue inflammation and ectopic lipid accumulation. Endocr J. 2012; 59: 849-57.
Stryjecki C, Mutch DM. Fatty acid–gene interactions, adipokines and obesity. Eur J Clin Nutr. 2011; 65: 285–97.
Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006; 6: 772-83.
Lee CC, Ávalos AM, Ploegh HL. Accessory molecules for Toll-like receptors and their function. Nat Rev Immunol. 2012; 12: 168-179.
Mancino A, Lawrence T. Nuclear factor-kappa B and tumor-associated macrophages. Clin Cancer Res. 2010; 16: 784-9.
Hirabara SM, Gorjão R, Vinolo MA, Rodrigues AC, Nachbar RT, Curi R. Molecular targets related to inflammation and insulin resistance and potential interventions. J Biomed Biotechnol. 2012; 2012: 379024.
Bhattacharya S, Dey D, Roy SS. Molecular mechanism of insulin resistance. J Biosciences. 2007; 32: 405–413.
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010; 53: 1270-87.
Rogue A, Spire C, Brun M, Claude N, Guillouzo A. Gene expression changes induced by PPAR gamma agonists in animal and human liver. PPAR Res. 2010; 2010: 325183.
Kaippert VC, Lopes-Rosado E, Rosa G, Morais-Oliveira EM, Kimi-Uehara S, Lima-D’Andrea C, Nogueira J, Fofano do Lago F. Influencia de la grasa de la dieta en el metabolismo glucídico de mujeres obesas con el genotipo Pro12Pro en el gen PPARgama2. Nutr Hosp. 2010; 25: 622-629.
Weiss EP, Brown MD, Shuldiner AR, Hagberg JM. Fatty acid binding protein-2 gene variants and insulin resistance: gene and gene-environment interaction effects. Physiol Genomics. 2002; 10: 145-57.
Martinez-Lopez E, Garcia-Garcia MR, Gonzalez-Avalos JM, Maldonado-Gonzalez M, Ruiz-Madrigal B et al. Effect of Ala54Thr polymorphism of FABP2 on anthropometric and biochemical variables in response to moderate-fat diet. Nutrition. 2013; 29: 46-51.
Yu C, Markan K, Temple KA, Deplewski D, Brady MJ, Cohen RN. The nuclear receptor corepressors NCoR and SMRT decrease peroxisome proliferator-activated receptor gamma transcriptional activity and repress 3T3-L1 adipogenesis. J Biol Chem. 2005; 280: 13600–5.
Gil A. Composición y Calidad Nutritiva de los Alimentos. In: Gil A. Tratado de Nutrición. España: Editorial Médica Panamericana; 2010.
Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, Evans RM. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med. 2013; 19: 557-66. doi:10.1038/nm.3159.
Gu FH. Biomarkers of adiponectin: plasma protein variation and genomic DNA polymorphisms. Biomark Insights. 2009; 13: 123-33.
Menzaghi C, Trischitta V, Doria A. Genetic Influences of adiponectin on insulin resistance, type 2 diabetes, and cardiovascular disease. Diabetes. 2007; 56: 1198-209.
AlSaleh A, Sanders TA, O’Dell SD. Effect of interaction between PPARG, PPARA and ADIPOQ gene variants and dietary fatty acids on plasma lipid profile and adiponectin concentration in a large intervention study. Proc Nutr Soc. 2012; 71: 141–53.
AlSaleh A, O’Dell SD, Frost GS, Griffin BA, Lovegrove JA, Jebb SA, Sander TA. RISCK Study Group. Single nucleotide polymorphisms at the ADIPOQ gene locus interact with age and dietary intake of fat to determine serum adiponectin in subjects at risk of the metabolic syndrome. Am J Clin Nutr. 2011; 94: 262–9.
Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol. 2004; 24: 29-33.
Vasseur F, Helbecque N, Lobbens S et al. Hypoadiponectinaemia and high risk of type 2 diabetes are associated with adiponectin-encoding (ACDC) gene promoter variants in morbid obesity: evidence for a role of ACDC in diabesity. Diabetologia. 2005; 48: 892–9.
Warodomwichit D, Shen J, Arnett DK, Tsai MY, Kabagambe EK, Peacock JM, Hixson JE, Straka RJ, Province MA et al. ADIPOQ polymorphism, monounsaturated fatty acids, and obesity risk: the GOLDN Stuyd. Obesity. 2009; 17: 510-7