2013, Number 3
<< Back Next >>
Rev Mex Neuroci 2013; 14 (3)
Saccadic eye movements abnormalities in polyglutamine diseases
Rodríguez-Labrada R, Velázquez-Pérez L
Language: Spanish
References: 65
Page: 150-158
PDF size: 250.01 Kb.
ABSTRACT
Polyglutamine diseases comprise a group of neurodegenerative diseases caused by expansion of citosine-adenine-guanine
(CAG) repeats in coding regions of specific genes. Among its phenotypical features, the saccadic abnormalities are very common.
Saccades allow us to shift, rapidly and accurately, the attention from a target to other in the visual scene. Saccadic eye movements
are generated by an extensive cortical-subcortical circuitry and they are usually used as important tools in basic and clinical
researches of nervous central system. This paper presents an updated review of saccadic abnormalities in polyglutamine
diseases, emphasizing in the usefulness of these features for diagnosis and disease biomarkers identifications. Saccadic
abnormalities in polyglutamine diseases point out the marked vulnerability of saccadic system to CAG expansions. Its study allows
us to identify useful parameters for early diagnosis and disease biomarkers for therapies evaluation. Nevertheless, other studies
are mandatory to get deep into the pathophysiology of these oculomotor abnormalities.
REFERENCES
Rosales-Reynoso MA, Ochoa-Hernandez AB, Barros-Nunez P. Diseases caused by triplet expansion. Rev Neurol 2009; 49(2): 79-87.
Pringsheim T, Wiltshire K, Day L, Dykeman J, Steeves T, Jette N. The Incidence and Prevalence of Huntington’s Disease: A Systematic Review and Meta-analysis. Mov Disord 2012; DOI: 10.1002/ mds.25075.
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck H. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77-9.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubralpallidoluysian atrophy (DRPLA). Nat Genet 1994; 6: 9-13.
Matilla-Dueñas A. The ever expanding Spinocerebellar Ataxias. Editorial. Cerebellum. 2012; DOI 10.1007/s12311-012-0376-4.
Durr A. Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 2010; 9: 885-94.
Cummings CJ, Zoghbi HY. Trinucleotide repeats: mechanisms and pathophysiology. Annu Rev Genomics Hum Genet 2000; 1: 281-328.
Pula JH, Gomez C, Kattah JC. Ophthalmologic features of the common spinocerebellar ataxias. Curr Opin Ophthalmol 2010; 21(6): 447-53.
Roig C. Saccadic eye movements in extrapyramidal disorders and particularly in Huntington’s disease. Neurologia 2001; 16(2): 57-62.
Rodríguez-Labrada R, Velazquez-Perez L. Eye Movement Abnormalities in Spinocerebellar Ataxias. In: Gazulla J (ed.). Spinocerebellar Ataxias. Rijeka: Intech; 2012. p.59-76. ISBN 979- 953-307-095-6
Sparks DL. The brainstem control of saccadic eye movements. Nat Rev Neurosci 2002; 3(12): 952-64.
Leigh RJ, Kennard C. Using saccades as a research tool in the clinical neurosciences. Brain 2004; 127(Pt 3): 460-77.
Ramat S, Leigh RJ, Zee DS, Optican LM. What clinical disorders tell us about the neural control of saccadic eye movements. Brain 2007; 130(Pt 1): 10-35.
Arden GB, Constable PA. The electro-oculogram. Prog Retinal Eye Res 2006; 25: 207-48.
Gaymard B. Cortical and sub-cortical control of saccades and clinical application. Revue Neurologique 2012; doi:10.1016/ j.neurol.2012.07.016
Prsa M, Thier P. The role of the cerebellum in saccadic adaptation as a window into neural mechanisms of motor learning. Eur J Neurosci 2011; 33(11): 2114-28.
Liem E, Frens MA, Smits M, Geest JN. Cerebellar Activation Related to Saccadic Inaccuracies. Cerebellum 2012; DOI 10.1007/s12311- 012-0417-z.
Shires J, Joshi S, Basso MA. Shedding new light on the role of the basal ganglia-superior colliculus pathway in eye movements. Curr Op Neurobiol 2010; 20: 1-9.
Watanabe M, Munoz DP. Probing basal ganglia functions by saccade eye movements. Eur J Neurosci 2011; 33: 2070-90.
Thurtell MJ, Tomsak RL, Leigh RJ. Disorders of saccades. Curr Neurol Neurosci Rep 2007; 7(5): 407-16.
Karatas M. Internuclear and supranuclear disorders of eye movements: clinical features and causes. Eur J Neurol 2009; 16(12): 1265-77.
Starr A. A disorder of rapid eye movements in Huntington’s chorea. Brain 1967; 90(3): 545-64.
Leigh RJ, Newman SA, Folstein SE, Lasker AG, Jensen BA. Abnormal ocular motor control in Huntington’s disease. Neurology 1983; 33(10): 1268-75.
Peltsch A, Hoffman A, Armstrong I, Pari G, Munoz DP. Saccadic impairments in Huntington’s disease. Exp Brain Res 2008; 186(3): 457-69.
Patel SS, Jankovic J, Hood AJ, Jeter CB, Sereno AB. Reflexive and volitional saccades: Biomarkers of Huntington disease severity and progression. J Neurol Sci 2012; 313: 35-41.
Lasker AG, Zee DS, Hain TC, Folstein SE, Singer HS. Saccades in Huntington’s disease. Slowing and dysmetria. Neurology 1988; 38: 427-31.
Beenen N, Büttner U, Lange HW. The diagnostic value of eye movement recording in patients with Huntington’s disease and their offspring. Electroencephalogr Clin Neurophysiol 1986; 63: 119-27.
Blekher TM, Yee RD, Kirkwood SC, Hake AM, Stout JC, Weaver MR, et al. Oculomotor control in asymptomatic and recently diagnosed individuals with the genetic marker for Huntington’s disease. Vision Res 2004; 44(23): 2729-36.
Blekher T, Johnson SA, Marshall J, White K, Hui S, Weaver M, et al. Saccades in presymptomatic and early stages of Huntington disease. Neurology 2006; 67(3): 394-9.
Golding CV, Danchaivijitr C, Hodgson TL, Tabrizi SJ, Kennard C. Identification of an oculomotor biomarker of preclinical Huntington disease. Neurology 2006; 67(3): 485-7.
Antoniades CA, Altham PM, Mason SL, Barker RA, Carpenter R. Saccadometry: a new tool for evaluating presymptomatic Huntington patients. Neuroreport 2007; 18(11): 1133-6.
Blekher T, Weaver MR, Cai X, Hui S, Marshall J, Jackson JG, et al. Test-retest reliability of saccadic measures in subjects at risk for Huntington disease. Invest Ophthalmol Vis Sci 2009; 50(12): 5707-11.
Kloppel S, Draganski B, Golding CV, Chu C, Nagy Z, Cook PA, et al. White matter connections reflect changes in voluntary-guided saccades in pre-symptomatic Huntington’s disease. Brain 2008; 131(Pt 1):196-204.
Rupp J, Dzemidzic M, Blekher T, West J, Hui S, Wojcieszek J, et al. Comparison of vertical and horizontal saccade measures and their relation to gray matter changes in premanifest and manifest Huntington disease. J Neurol 2012; 259: 267-76.
Rivaud-Pechoux S, Durr A, Gaymard B, Cancel G, Ploner CJ, Agid Y, Brice A, et al. Eye movement abnormalities correlate with genotype in autosomal dominant cerebellar ataxia type I. Ann Neurol 1998; 43: 297-302.
Klostermann W, Zuhlke C, Heide W, Kompf D, Wessel K. Slow saccades and other eye movement disorders in spinocerebellar atrophy type 1. J Neurol 1997; 244(2): 105-11.
Buttner N, Geschwind D, Jen JC, Perlman S, Pulst SM, Baloh RW. Oculomotor phenotypes in autosomal dominant ataxias. Arch Neurol 1998; 55(10): 1353-7.
Burk K, Fetter M, Abele M, Laccone F, Brice A, Dichgans J, et al. Autosomal dominant cerebellar ataxia type I: oculomotor abnormalities in families with SCA1, SCA2, and SCA3. J Neurol 1999; 246(9): 789- 97.
Wadia NH, Swami RK. A new form of heredo-familial spinocerebellar degeneration with slow eye movements (nine families). Brain 1971; 94: 359-74.
Vallés L, Estrada GL, Bastecherrea SL. Algunas formas de heredoataxia en una región de Cuba. Rev Neurol (Cub) 1978 27: 163-76.
Orozco DG, Estrada R, Perry T, Araña J, Fernández R. Dominantly inherited olivopontocerebellar atrophy from eastern Cuba. Clinical, neuropathological and biochemimical findings. J Neurol Sci 1989; 93: 37-50.
Cancel G, Durr A, Didierjean O, Imbert G, Burk K, Lezin A, et al. Molecular and clinical correlations in spinocerebellar ataxia 2: a study of 32 families. Hum Mol Genet 1997; 6(5): 709-15.
Wadia N, Pang J, Desai J, Mankodi A, Desai M, Chamberlain S. A clinicogenetic analysis of six Indian spinocerebellar ataxia (SCA2) pedigrees. The significance of slow saccades in diagnosis. Brain 1998; 121(Pt 12): 2341-55.
Velázquez PL, Cruz GS, Santos FN, Almaguer ML, Escalona BK, Rodríguez LR, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: Insights into SCA2 founder effect in Holguin. Neurosci Lett 2009; 454(2): 157-60.
Kulkarni SA, Wadia NH. Model of an oculomotor subsystem. Int J Biomed Comput 1975; 6(1): 1-21.
Velazquez-Perez L, Seifried C, Santos-Falcon N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity is controlled by polyglutamine size in spinocerebellar ataxia 2. Ann Neurol. 2004; 56(3): 444-7.
Seifried C, Velazquez-Perez L, Santos-Falcon N, Abele M, Ziemann U, Almaguer LE, et al. Saccade velocity as a surrogate disease marker in spinocerebellar ataxia type 2. Ann N Y Acad Sci. 2005; 1039: 524-7.
Velazquez-Perez L, Seifried C, Abele M, Wirjatijasa F, Rodriguez- Labrada R, Santos-Falcon N, et al. Saccade velocity is reduced in presymptomatic spinocerebellar ataxia type 2. Clin Neurophysiol 2009; 120(3): 632-5.
Estrada R, Galarraga J, Orozco G, Nodarse A, Auburger G. Spinocerebellar ataxia 2 (SCA2): morphometric analyses in 11 autopsies. Acta Neuropathol 1999; 97(3): 306-10.
Geiner S, Horn AK, Wadia NH, Sakai H, Buttner-Ennever JA. The neuroanatomical basis of slow saccades in spinocerebellar ataxia type 2 (Wadia-subtype). Prog Brain Res 2008; 171: 575-81.
Gierga K, Burk K, Bauer M, Orozco Diaz G, Auburger G, Schultz C, et al. Involvement of the cranial nerves and their nuclei in spinocerebellar ataxia type 2 (SCA2). Acta Neuropathol 2005; 109(6): 617-31.
Velázquez-Pérez Luis. Spinocerebellar Ataxia Type 2. Pathophysiology, Diagnosis and Evolution. 3rd. Ed. Havana: ECIMED; 2012. ISBN 978-959-713-5. [Book in Spanish].
Federighi P, Cevenini G, Dotti MT, Rosini F, Pretegiani E, Federico A, et al. Differences in saccade dynamics between spinocerebellar ataxia 2 and late-onset cerebellar ataxias. Brain 2011; 134: 879-91.
Rodríguez-Labrada R; Velázquez-Pérez L; Seigfried C; Canales- Ochoa N; Auburger G; Medrano-Montero J; et al. Saccadic latency is prolonged in Spinocerebellar Ataxia type 2 and correlates with the frontal-executive dysfunctions. J Neurol Sci. 2011; 306: 103-10.
Rodríguez Díaz JC, Velázquez-Pérez L, Sanchez Cruz G, Almaguer Gotay D, Rodríguez Labrada R, Aguilera Rodríguez R, Canales Ochoa N, et al. Evaluation of Neurological Restoration in patients with Spinocerebellar Ataxia type 2. Plast & Rest Neurol 2008: 7: 13-8.
Rub U, Brunt ER, Gierga K, Schultz C, Paulson H, de Vos RA, et al. The nucleus raphe interpositus in spinocerebellar ataxia type 3 (Machado-Joseph disease). J Chem Neuroanat 2003; 25(2): 115-27.
Bour LJ, van Rootselaar AF, Koelman JH, Tijssen MA. Oculomotor abnormalities in myoclonic tremor: a comparison with spinocerebellar ataxia type 6. Brain 2008; 131(Pt 9): 2295-303.
Christova P, Anderson JH, Gomez C. Impaired Eye Movements in Presymptomatic Spinocerebellar Ataxia Type 6. Arch Neurol 2008; 65(4): 530-6.
Gouw LG, Castaneda MA, McKenna CK, Digre KB, Pulst SM, Perlman S, et al. Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 1998; 7(3): 525-32.
Oh AK, Jacobson KM, Jen JC, Baloh RW. Slowing of voluntary and involuntary saccades: an early sign in spinocerebellar ataxia type 7. Ann Neurol 2001; 49(6): 801-4.
Bang OY, Lee PH, Kim SY, Kim HJ, Huh K. Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J Neurol Neurosurg Psychiatry 2004; 75(10): 1452-6.
Martin J, Van Regemorter N, Del-Favero J, Lofgren A, Van Broeckhoven C. Spinocerebellar ataxia type 7 (SCA7) - correlations between phenotype and genotype in one large Belgian family. J Neurol Sci 1999; 168(1): 37-46.
Hubner J, Sprenger A, Klein C, Hagenah J, Rambold H, Zuhlke C, et al. Eye movement abnormalities in spinocerebellar ataxia type 17 (SCA17). Neurology 2007; 69(11): 1160-8.
Stevanin G, Brice A. Spinocerebellar ataxia 17 (SCA17) and Huntington’s disease-like 4 (HDL4). Cerebellum. 2008; 7(2): 170-8.
Matthew J. Thurtell MJ, Pioro EP, Leigh RJ. Abnormal eye movements in Kennedy Disease. Neurology. 2009; 72: 1528-30.