2013, Number 4
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2013; 29 (4)
La molécula CD28 y su función en la activación de células T
Saavedra HD
Language: Spanish
References: 42
Page:
PDF size: 191.75 Kb.
ABSTRACT
CD28 is a very important correceptor among T cells and provide positive signals that promote and sustain T-cell responses. In the last few years, CD 28 has become an interesting target in grafts and autoimmune diseases. This review will focus on the mechanisms whereby CD28 allowing a complete T cell activation.
REFERENCES
Acuto O, Mise-Omata S, Mangino G, Michel F. Molecular modifiers of T cell antigen receptor triggering threshold: the mechanism of CD28 costimulatory receptor. Immunol Rev 2003;192:21–31.
Rudd CE, Taylor A, Schneider H. CD28 and CTLA-4 coreceptor expression and signal transduction. Immunol Rev 2009; 229:12–26.
Leitnera J, Grabmeier-Pfistershammerb K, Steinbergera. Receptors and ligands implicated in human T cell costimulatory processes. Immunology Letters 2010; 128: 89–97.
Bluestone J. New perspectives of CD28-B7 mediated T cell costimulation. Immunity 1995;2:555–9.
Linsley PS. Distinct roles for CD28 and cytotoxic T lymphocyte-associated molecule 4 receptor during T-cell activation. J Exp Med 1995;182:289–92.
Rudd CE. The reverse stop-signal model for CTLA4 function. Nat Rev Immunol 2008;8:153–60.
Podojil JR, Miller SD. Molecular mechanisms of T-cell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunol Rev 2009;229:337–55.
Li XC, Rothstein DM, Sayegh MH. Costimulatory pathways in transplantation: challenges and new developments. Immunol Rev 2009;229:271–93.
Garçon F, Patton DT, Emery JL, Hirsch E, Rottapel R, Sasaki T, et al. CD28 provides T-cell costimulation and enhances PI3K activity at the immune synapse independently of its capacity to interact with the p85 ⁄ p110 heterodimer. Blood 2008;111:1464–71.
van der Merwe P, Bodian D, Daenke S, Linsley PS, Davis SJ. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J Exp Med 1997;185:393–403.
Chattopadhyay K, Lazar-Molnar E, Yan Q, Rubinstein R, Zhan C, Vigdorovich V, et al. Sequence, structure, function, immunity: structural genomics of costimulation. Immunol Rev 2009;229:356–86.
Schneider H, Smith X, Liu H, Bismuth G, Rudd C. CTLA-4 expression disrupts ZAP-70 microcluster formation, T-cell ⁄ APC conjugation and calcium mobilization. Eur J Immunol 2007;38:40–7.
Gary A. Koretzky GA. T Lymphocyte Signaling Mechanisms and Activation. En: Paul W.E. Fundamental Immunology. 6th edition. Washington, DC: Lippincott Williams & Wilkins; 2008.347-72.
Driessens G, Kline J, Gajewski TF. Costimulatory and coinhibitory receptors in anti-tumor immunity. Immunol Rev 2009;229:126–44.
Kölsch U, Arndt B, Reinhold D, Lindquist JA, Jüling N, Kliche S, et al. Normal T-cell development and immune functions in TRIM-deficient mice. Mol Cell Biol 2006;26:3639–48.
Wang H, Rudd CE. SKAP-55, SKAP-55- related and ADAP adaptors modulate integrin-mediated immune-cell adhesion.Trends Cell Biol 2008;18:486–93.
Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K, et al. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 2003;197:257–62.
Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L, et al. CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 2004;173:5392–7.
Holdford AD, Green JM, Levin SD, Denny MF, Straus DB, Link PS, et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 1999;190:375–84.
Sanchez-Valdepenas C, Martin AG, Ramakrishnan P, Wallach D, Fresno M. NFkappaB-inducing kinase is involved in the activation of the CD28 responsive element through phosphorylation of c-Rel and regulation of its transactivating activity. J Immunol 2006;176:4666–74.
Kim HH, Tharayil M, Rudd CE. Growth factor receptor-bound protein 2 SH2/SH3 domain binding to CD28 and its role in co-signaling. J BiolChem 1998;273:296–301.
D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347–58.
Rudd CE, Schneider H. Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 2003;3:544–56.
Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG, et al. 3-Phosphoinositide-dependent proteinkinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. CurrBiol 1997;7: 776–89.
Frauwirth KA, Riley JL, Harris MH, Parry RV, Rathmell JC, Plas DR,, et al. The CD28 signaling pathway regulates glucose metabolism. Immunity 2002;16:769–777.
Schneider H, Valk E, Leung R, Rudd CE. CTLA-4 activation of phosphatidylinositol 3-kinase (PI 3-K) and protein kinase B (PKB ⁄ Akt) sustains T-cell anergy without cell death. PLoS ONE 2008;3(12):e3842.
Kirchhoff S, Muller WW, Li-Weber M, Krammer PH. Up-regulation of c-FLIPshort and reduction of activation-induced cell death in CD28-costimulated human T cells. Eur J Immunol 2000;30:2765–74.
Jones RG, Elford AR, Parsons MJ, Wu L, Krawczyk CM, Yeh WC, et al. CD28-dependent activation of protein kinase B ⁄ Akt blocks Fas-mediated apoptosis by preventing death-inducing signaling complex assembly. J Exp Med 2002;196:335–48.
Wood JE, Schneider H, Rudd CE. TcR and TcR-CD28 engagement of protein kinase B (PKB ⁄ AKT) and glycogen synthase kinase-3 (GSK-3) operates independently of guanine nucleotide exchange factor VAV-1. J BiolChem 2006;281:32385–94.
Kim H-H, Tharayil M, Rudd CE. Growth factor receptor-bound protein 2 SH2 /SH3 domain binding to CD28 and its role in cosignaling. J Biol Chem 1998;273:296–301.
Schneider H, Rudd C. CD28 and Grb2, relative to Gads or Grap, preferentially co-operate with Vav1 in the activation of NFAT ⁄ AP-1 transcription. Biochem Biophys Res Commun 2008;369:616–21.
Bustelo XR. Regulatory and signaling properties of the Vav family. Mol Cell Biol 2000; 20:1461–77.
Abbas A.K, Lichtman AH, Pillai S. Activation of T Lymphocytes. En: Abbas A.K, Lichtman AH, Pillai S. Celular and Molecular Immunology. 7th edition. Washington, DC: Elsevier Saunders;2011.203-24.
Hara H, Wada T, Bakal C, Kozieradzki I, Suzuki S, Suzuki N, et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 2003;18:763–75.
Wang D, Matsumoto R, You Y, Che T, Lin XY, Gaffen SL, et al. CD3 ⁄ CD28 costimulationinduced NF-kappaB activation is mediated by recruitment of protein kinase C-, Bcl10, and IkappaB kinase beta to the immunological synapse through CARMA1. Mol Cell Biol 2004;24:164–71.
Tanner MJ, Hanel W, Gaffen SL, Lin X. CARMA1 coiled-coil domain is involved in the oligomerization and subcellular localization of CARMA1 and is required for T cell receptor- induced NF-kappaB activation. J BiolChem 2007;282:17141–7.
Annibaldi A, Sajeva A, Muscolini M, Ciccosanti F, Corazzari M, Piacentini M, et al. CD28 ligation in the absence of TCR promotes RelA ⁄ NF-kappaB recruitment and trans-activation of the HIV-1 LTR. Eur J Immunol 2008;38: 1446–51.
Sathish JG, Johnson KG, LeRoy FG, Fuller KJ, Hallett MB, Brennan P, et al. Requirement for CD28 costimulation is lower in SHP-1-deficient T cells. Eur J Immunol 2001;31:3649–58.
Taylor A, Akdis M, Joss A, Akkoç T, Wenig R, Colonna M, et al. IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J Allergy ClinImmunol 2007;120:76–83.
Boesteanu A, Katsikis P. Memory T cells need CD28 costimulation to remember. SeminImmunol. 2009; 21(2): 69–77.
Janakiram M, Abadi YM, Sparano JA, Zang X. T cell coinhibition and immunotherapy in human breast cancer. Discov Med. 2012;14(77):229-36.
Garbe C, Peris K, Hauschild A, Saiag P, Middleton M, Spatz A, et al. Diagnosis and treatment of melanoma. European consensus-based interdisciplinary guideline - Update 2012. Eur J Cancer. 2012;48(15):2375-90.