2013, Number 1
<< Back Next >>
Rev Cub Oftal 2013; 26 (1)
Conic corneal trephination as a new cutting profile for penetrating and anterior lamellar keratoplasties
Capote CA, Cárdenas DT, Cruz ID, Hernández LI, Vinardell PS, Ravelo VW
Language: Spanish
References: 27
Page: 15-29
PDF size: 898.03 Kb.
ABSTRACT
Objectives: to describe the characteristics and use of the conic corneal trephination.
Methods: an experimental study was performed in "Ramón Pando Ferrer" Cuban
Institute of Ophthalmology from January to December 2010. Ten eyeballs not useful
for transplantation underwent trephination, with a corneal vacuum trephine
particularly designed to create an oblique corneal cut. The cutting length, the corneal
thickness, the external diameter of the disc, the internal diameter of the disc and the
cutting angle were the analyzed parameters. Descriptive statistics were applied to
show the results.
Results: the mean cutting length was 1776.7 ± 273.7 µm and the mean corneal
thickness at the cutting point was 850.0 ± 119.2 µm , being the difference between
them equals to 926 µm. The mean external diameter was 7.6 ± 0.2 mm and the
internal diameter was 8.5 ± 0.4 mm, with a difference of 0.9 mm. The mean cutting
angle amounted to 28.4 ± 2.1°. A formula was developed to calculate the cutting
length or depth based on the mean pachymetry of the circle where the trephination is
performed for a determined cutting angle.
Conclusions: aregular symmetric cut was obtained, longer than the corneal thickness
with the planned conic profile. Such cutting pattern provides a larger contact surface
and self-sealing tendency.
REFERENCES
Zirm E. Eine erfolgreiche totale Keratoplastik. Albrecht von Graefes Arch Klin Exp Ophthalmol. 1906;64:580-93.
Seitz B, Langenbucher A, Naumann GO. Trephination in Penetrating Keratoplasty. En: Reinhard T, Larkin F, editors. Cornea y External Eye Disease. New York: Ed. Springer Berlin Heidelberg; 2006. p. 123-53.
Lin DT, Wilson SE, Reidy JJ, Klyce SD, McDonald MB, Insler MS, et al. Topographic changes that occur with 10-0 running suture renoval following penetrating keratoplasty. Refract Corneal Surg. 1990;6(1):21-5.
Seitz B, Langenbucher A, Küchle M, Naumann GOH. Impact of graft diameter on corneal power and the regularity of postkeratoplasty astigmatism before and after suture removal. Ophthalmology. 2003;110(11):2162-7.
Mader TH, Yuan R, Lynn MJ, Stulting RD, Wilson LA, Waring GO. Change in keratometric astigmatism after suture removal more than one year after penetrating keratoplasty. Ophthalmology. 1993;100(1):119-27.
Musch DC, Meyer RF, Sugar A. The effect of removing running sutures on astigmatism after penetrating keratoplasty. Arch Ophthalmol. 1988;106(4):488-92.
Seitz B, Langenbucher A, Naumann GO. Astigmatismus bei Keratoplastik. En: Seiler T, editor. Refraktive Chirurgie. Stuttgart: Enke; 2000. p. 197-252.
Von Hippel A Über Transplantationen der Kornea. Ber Ophthalmol Ges Heidelberg. 1886;18:54.
Vishal G, Vajpayee RB. Surgical Instruments. En: Vajpayee RB, Sharma N, Tabin GC, Taylor HR, editors. Corneal transplantation. New Delhi: Jaypee Brothers; 2002. p. 45-53.
Legeais JM, Parel JM, Simon G, Ren Q, Denham D. Endothelial damage by the corneal Hessburg-Barron vacuum trephine. Refract Corneal Surg. 1993;9(4):255-8.
Langenbucher A, Seitz B, Kus MM, Naumann GO. Transplant vertical tilt after perforating keratoplasty comparison between nonmechanical trepanation with excimer laser and motor trepanation. Klin Monatsbl Augenheilkd. 1998;212(3):129-40.
Behrens A, Seitz B, Küchle M, Langenbucher A, Kus MM, Rummelt C, et al. "Orientation teeth" in nonmechanical laser corneal trephination: 2,94 mm Er: YAG laser vs 193 nm ArF excimer laser. Br J Ophthalmol. 1999;83(9):1008-12.
Behrens A, Küchle M, Seitz B, Langenbucher A, Kus MM, Amann T, et al. Stromal thermal effects induced by nonmechanical (2,94 mm) Er:YAG laser corneal trephination. Arch Ophthalmol. 1998;116(10):1342-8.
Stojkovic M, Seitz B, Küchle M, Langenbucher A, Viestenz A, Viestenz A, et al. Corneal shrinkage induced by nonmechanical Q-switched erbium:YAG laser trephination for penetrating keratoplasty. Graefes Arch Clin Exp Ophthalmol. 2003;241(8):667-72.
Kaiserman I, Bahar I, Rootman DS. Half-top-hat a new wound configuration for penetrating keratoplasty. Br J Ophthalmol 2008;92(1):143-6.
Ignacio TS, Nguyen TB, Chuck RS, Kurtz RM, Sarayba MA. Top hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model. Cornea. 2006;25(3):336-40.
Price FW Jr, Price MO. Femtosecond laser shaped penetrating keratoplasty: oneyear results utilizing a top-hat configuration. Am J Ophthalmol. 2008;145(2):210-4.
Farid M, Kim M, Steinert RF. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology. 2007;114(12):2208-12.
Buratto L, Bohm E. The use of the femtosecond laser in penetrating keratoplasty. Am J Ophthalmol. 2007;143(5):737-42.
Por YM, Cheng JY, Parthasarathy A, Mehta JS, Tan DT. Outcomes of femtosecond laserassisted penetrating keratoplasty. Am J Ophthalmol. 2008;145(5):772-4.
Bahar I, Kaiserman I, McAllum P, Rootman D. Femtosecond laser-assisted penetrating keratoplasty: stability evaluation of different wound configurations. Cornea. 2008;27(2):209-11.
Steinert RF, Ignacio TS, Sarayba MA. Top hat-shaped penetrating keratoplasty using the femtosecond laser. Am J Ophthalmol. 2007;143(4):689-91.
Seitz B, Brunner H, Viestenz A. Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. Am J Ophthalmol. 2005;139(5):941-4.
Slade SG. Applications for the femtosecond laser in corneal surgery. Curr Opin Ophthalmol. 2007;18(4):338-41.
Wylega³a E, Milka M, Tarnawska D, Dobrowolski D. Femtosecond laser application in keratoplasty-current view. Klin Oczna. 2008;110(4-6):207-10.
Lee J, Winokur J, Hallak J. Femtosecond dovetail penetrating keratoplasty: surgical technique and case report. Br J Ophthalmol. 2009;93(7):861-3.
Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol 2009;147(2):189-97.