2005, Number 2
<< Back Next >>
Cir Cir 2005; 73 (2)
Physiopathological alterations secondary to extracorporeal circulation in cardiac surgery
Valenzuela-Flores AG, Valenzuela-Flores AA, Ortega-Ramírez JA, Penagos-Paniagua M, Pérez-Campos JP
Language: Spanish
References: 56
Page: 143-149
PDF size: 73.31 Kb.
ABSTRACT
Cardiopulmonary bypass (CPB) is one of the methods used in myocardial revascularization and can be associated with adverse events that are uncommon, but CPB induces high morbidity and mortality. Cardiac surgery and CPB activate a systemic inflammatory response characterized by tissular lesions, cells movements and blood flow toward the interstice where the harmful stimulus has begun, under the influence of the mediators. The systemic inflammatory response may be initiated during cardiac surgery by a number of processes, including blood contact with the foreign surface of the CPB apparatus, development of ischemia and reperfusion injury, and presence of endotoxemia. In the course of cardiac surgery using CPB, all three processes are present and contribute concurrently to the systemic inflammatory response. The term “systemic inflammatory response syndrome” (SIRS) has been proposed to describe an entity that continually overlaps with normal postoperative physiology. A frequent complication of SIRS is the development of organ dysfunction, including acute lung injury, shock, renal failure, and multiple organ dysfunction syndrome. Finally, long-term survival in patients developing SIRS may also be adversely affected. The purpose of this review is to examine and understand the pathological mechanisms for inflammatory response that occur following cardiopulmonary bypass.
REFERENCES
Chang M, Hahn R, Teusthc S, Hut Wagner L. Multiple risk factors and population attributable risk for ischemic Heart disease mortality in the United States, 1971-992. J Clin Epidemiol 2001;54:634-644.
2. Archbold RA, Curzen NP. Off -pump coronary artery bypass graft surgery: the incidence of postoperative atrial fibrillation. Heart 2003;89:1134-1137.
3. Casey LC. Roles of cytokines in the pathogenesis of cardiopulmonary induced multisystem organ failure. Ann Thorac Surg 1993;S6: S92-S96.
4. Huddy SP, Joyce WP. Pepper JR. Gastrointestinal complications in 4,473 patients who underwent cardiopulmonary bypass surgery. Br J Surg 1991;78:293-296.
5. Thakar ChV, Jared J-P, Worley S, Cotman K, Paganini EP. Renal dysfunction and serious infections after open-heart surgery. Kidney Int 2003;64:239-246.
6. Bosner RS, Dave J, Gademsetty M, Carter P, Davies E, Taylor P, Gaya H, Lennox SC, Vergani D. Complement activation before, during and after cardiopulmonary bypass. Eur J Cardiothoracic Surg 1990;4:291-296.
7. Bando K, Pillai R, Cameron DE, Brawn JD, Winlelstein JA, Hutchins GM, Reitz BA, Baumgartner WA. Leukocyte depletion ameliorates free radical mediated lung injury after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990; 99:873-877.
8. Garcia-Moll X, Kaski JC. Cardiopatía isquémica: marcadores de inflamación y riesgo cardiovascular. Rev Esp Cardiol 1999;52:990-1003.
9. Laffey J, Boylan J, Cheng D. The systemic inflammatory response to cardiac surgery. Anesthesiology 2002;97:215-252.
10. Kollef MH, Wragge T, Pasque Ch. Determinants of mortality and multiorgan dysfunction in cardiac surgery patients requiring prolonged mechanical ventilation. Chest 1995;107(5):1395-1401.
11. Kirklin JW. Open-heart surgery al the Mayo Clinic: the 25th. Anniversary. Mayo Clin Proc 1980;55:339-341.
12. Rosenblum R, Heidenberg WJ, “Post pump syndrome” a variant of post transfusion hepatitis? Incidence of post pump syndrome and post transfusion hepatitis. Arch Intern Med 1968;122:204-206.
13. Salama A, Hugo F, Heinrich D, et al. Deposition of terminal C5b-9 complement complexes on erythrocytes and leukocytes during cardiopulmonary bypass. N Engl J Med 1988;318:408-414.
14. Gans H, Krivit W. problems in homeostasis during open heart surgery. IV On the changes clotting mechanism during cardiopulmonary bypass procedures. Ann Surg 1962; 155:353-359.
15. Kalter RD, Saul CM, Wetstein L, Soriano C, Reiss RF. Cardiopulmonary bypass. Associated haemostatic abnormalities. J Thorac Cardiovasc Surg 1979; 77:427-435.
16. Gomes MR, McGoon DC. Bleeding patterns after open-heart surgery. J Thorac Cardiovasc Surg 1970;60:87-97.
17. Pearson DT, McArdle B, Posland SJ, Murray A. A clinical evaluation of the performance characteristics have one-membrane and fiber bubble oxygenators: haemocompatibility studies. Perfusion 1986;1: 81-98.
18. Pearson DT, McArdle B. Haemocompatibility of membrane and bubble oxygenators. Perfusion 1989;4:9-24.
19. Hugli TE. Complement anaphylatoxins as plasma mediators, spasmogens and chemotaxins. In: Reisfield PA, Mandy WJ, editors. Current topics in molecular immunology. New York: Plenum Press; 1979. pp. 225-279.
20. Chenoweth DE, Hugli TE. Demonstration of specific C5a receptor on intact human polymorph nuclear leukocytes. Proc Natl Acad Sci USA 1978:75:3943-3947.
21. Chenoweth DE, Steven W, Cooper BA, Hugli TE, Stewart RW, Blackstone EH, Kirklin JW. Complement activation during cardiopulmonary. N Engl J Med 1981;304(9):497-503.
22. Moore FC, Warner KG, Assousa BA, Valeri RC, Khuri SF. The effects of complement activation during cardiopulmonary bypass. Ann Surg 1988;208(1):95-103.
23. Kalfin RE, Engelmann RM, Rousseau JA, Flack III JE, Deaton DW, Kreutzer DL, Dash DK. Induction of interleukin-8 expression during cardiopulmonary bypass. Circulation 1993; 88[Part 2]:401-406.
24. Ascione R, Lloyd CT, Underwood MJ, Lotto A, Pitsis AA, Angelini GD. Inflammatory response after coronary revascularization with or without cardiopulmonary bypass a prospective randomized study. Ann Thorac Surg 2000;69:1198-1204.
25. Kirklin JK, Westaby S, Blackstone EH, Kirklin JW, Chenoweth DE, Pacifico AD. Complement and the damaging effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983;86:845-857.
26. Kirklin JK, Chenotoweth DE, Naftel DC, Blackstone EH, Kirkin JW, Bitran DD, et al. Effects of protamine administration after cardiopulmonary bypass on complement, blood elements and the hemodynamic state. Ann Thorac Surg 1986;41:193-199.
27. Valenzuela FA, Wakida KG, Limón RA, Obregón C, Orihuela O, Romero C. Estado inmunitario del paciente pediátrico operado del corazón. Rev Alergia Mex ;XLII(5):81-85.
28. Bruins P, Velthuis H, Yazdanbakhsh AP, Jansen P, van Hardevelt F, de Beaumont E, et al. Activation of the complement system during and after cardiopulmonary bypass surgery: Post surgery activation involves C-reactive protein and is associated with postoperative arrhythmia. Circulation 1997;96(10):3542-3548.
29. Wolbink GJ, Brower MC, Buysmann S, Ten Berge IJM, Hack CE. CRP-mediated activation of complement in vivo: assessment by measuring circulating complement-CRP complexes. J Immunol 1996;157:473-479.
30. Manian FA. A prospective study of daily measurement of C-reactive protein in serum of adults with neutropenia. Clin Infect Dis 1995;21:114-121.
31. Sinclair, DG, Haslam PL, Qinlan GJ, Pepper JR, Evans TW. The effect of cardiopulmonary bypass on intestinal and pulmonary endothelial permeability. Chest 1995;108(3):718-724.
32. Taggart DP. El-Fiky MM, Carter R, Bowman A, Wheatley DJ. Respiratory dysfunction after uncomplicated cardiopulmonary bypass. Ann Thorac Surg 1993;56:1123-1128.
33. Perez R, Kaski JC. Interleucina-10 y enfermedad coronaria Rev Esp Cardiol 2002;55(7):738-750.
34. Wachtfogel HT, Kunich U, James HL, et al. Human plasma kallicrein release neutrophil elastasa during blood coagulation. J Clin Invest 1983;72:1672-1677.
35. Rinder CS, Bona JL, Rinder HM, Mathieu J, Hines R, Smith BR. Cardiopulmonary bypass induces leukocyte-platelet adhesion. Blood 1992;79:1201-1205.
36. Raschke P, Becker BF. Adenosine and PAF dependent mechanisms lead to myocardial reperfusion injury by neutrophiles after brief ischemia. Cardiovasc Res 1995;29:569-576.
37. Nilsson L, Kulander L, Sven-Olov N, Eriksson O. Endotoxins in cardiopulmonary bypass. J Thorac Cardiovasc Surg 1990; 100:777-780.
38. Pizzo PA. Empirical therapy and prevention of infections in the immunocompromised host. In: Mandell GL, Bennet JE. Dolin R, editors. Principles and practice of infectious diseases. 5th edition. New York: Churchill-Livingstone; 2000. pp. 3102-3112.
39. Johnston DL, Waldhausen JH, Park JR. Deep Soft Tissue infections in the neutropenic pediatric oncology patient. J Pediatr Hematol Oncol 2001;23(7):443-447.
40. Rossi F. The O2-forming NADPH oxidase of the phagocytes: nature, mechanisms of activating and function. Biochim Biophysics Acta 1984; 853:65-71.
41. Clermont G, Vergely C, de Girard C, Rochette L. Cellular injury associated with extracorporeal circulation (in French) Ann Cardiol Angiol 2002;51(1):38-43.
42. Richard H, Marc S, Graeme R. The systemic inflammatory response to cardiopulmonary bypass: pathological, therapeutic, and pharmacological considerations. Anesth Analg 1997;85;766-782.
43. Seghaye MC, Grabitz RG, Duchateau J, Busse S, Däbritz S, Koch D, et al. Inflammatory reaction and capillary leak syndrome related to cardiopulmonary bypass in neonates undergoing cardiac operations. J Thorac Cardiovasc Surg 1996:112(3):687-697.
44. Mentiko AP, Kunkel SL, Standiford TJ, et al. Anoxiahperoxia induces monocyte-derived interleukin-8. J Clin Invest 1992;90:791-798.
45. Seghaye MC, Duchateau J, Bruniaux J, Demontoux S, Bosson C, Serraf A, et al. Interleukin-10 release related to cardiopulmonary bypass in infants undergoing cardiac operations. J Thorac Cardiovasc Surg 1996:111(3):545-553.
46. Nijsten MW, de Groot ER, Ten Duis HJ, Klasen HJ, Hack CE, Aarden LA. Serum levels of interleukin-6 and acute phase responses (letter). Lancet 1987;2:921-922.
47. Rennick D, Hudak S Yang G, Jackson J. Regulation of hematopoietic cell development by interleukin 4,5 and 6. Immunol Res 1989;8:212-225.
48. Babior BM. Oxygen depend microbial killing by phagocytes. N Engl J Med 1978;298: 659-668, 721-725.
49. Fantone JC, ward PA. Role oxygen derived free radicals and metabolites in leukocyte-depend inflammatory reactions. Am J Pathol 1982;107:397-418.
50. Kirklin JK. Prospects for understanding and eliminating the deleterious effects of cardiopulmonary bypass. Ann Thorac Surg 1991;51:529-531.
51. Messent M, Sullivan K, Keogh BF, Morgan CJ, Evans TW. Adult respiratory distress syndrome following cardiopulmonary bypass: incidence and prediction. Anesthesia 1992;47:267-268.
52. Sabik JF, Gillinov AM, Blackstone EH, Vacha C, Houghtaling PL, Navia J. Does off pump coronary surgery reduce morbility and mortality? J Thorac Cardiovasc Surg 2002;124(4):698-706.
53. Butler J, Rocker GM, Westaby S. Inflammatory response to cardiopulmonary bypass. Ann Thorac Surg 1993;55:552-559.
54. Levy JH, Tanaka K. Inflammatory response to Cardiopulmonary Bypass. Ann Thorac Surg 2003;75:S715-S720.
55. Jaggers J, Neal M, Smith P. Infant Cardiopulmonary Bypass: A Procoagulant State. Ann Thorac Surg 1999;68:513-520.
56. Hunt B, Parratt R, Segal H. Activation of coagulation and fibrinolysis during cardiothoracic operations. Ann Thorac Surg 1998;65:712-718.