2005, Number 2
<< Back Next >>
Cir Cir 2005; 73 (2)
Involvement of L-arginine-nitric oxide-cyclic GMP pathway in the peripheral antinociceptive effect induced by parecoxib
Martínez-Quiroz ZI, López-Muñoz FJ, Medardo GU
Language: Spanish
References: 24
Page: 119-125
PDF size: 82.87 Kb.
ABSTRACT
Objective: The present study was undertaken to determine whether the local antinociceptive activity of parecoxib is mediated, at least in part, through the L-arginine-NO-cGMP pathway using the pain-induced functional impairment model in the rat.
Material and methods: A comparative and experimental study was designed using 48 female Wistar rats, weighing between 180 and 200 g. Pain was induced through the injection of 0.05 ml of 30% uric acid into the knee joint of the right hind limb.
Results: Administration of parecoxib ( i. v.) generated a dose-dependent antinociceptive effect in rats injected with uric acid. Intra-articular ( i. a.) pre-treatment with 1 H-(1,2,4)-oxadiazolo (4,2-a) quinoxalin-1-one (ODQ, an inhibitor-soluble guanylyl cyclase) (5 and 10 µg i. a.) reversed the antinociceptive effect of parecoxib (1 mg/kg i.v). However, ipsilateral i. a. pre-treatment with 3-morpholino-sydnonimine-HCl (SIN-1, a non-enzymatic donor of NO) (50 and 500 mg i. a.) potentiated the antinociceptive effect induced by parecoxib (0.3 mg/kg i.v). Intra-articular pre-treatment with L-arginine (a NO substrate) (60 and 600 mg i. a.) did not modify the antinociceptive effect induced by parecoxib (0.3 mg/kg i. v.). Student t-test was used to compare the two groups of data.
Conclusions: The present results suggest that, in addition to cyclo-oxygenase-2 inhibition, the antinociceptive effect of parecoxib could also involve activation of the L-arginine-NO-cyclic GMP pathway at the peripheral level.
REFERENCES
López-Jaramillo P. Óxido nítrico y dolor. MEDUNAB 2001;10:1-7.
2. Palmer RMJ, Ashtom DS, Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 1988;333:664.
3. Cheer SM, Goa KL. Parecoxib (parecoxib sodium). Drugs 2001;61: 1133-1141.
4. Farrar MW, Lerman J. Novel concepts for analgesia in pediatric surgical patients. Cyclo-oxygenase-2 inhibitors, alfa 2-agonists and opioids. Anesthesiol Clin N Am 2002;20:59-82.
5. Komers R, Anderson S, Epstein M. Renal and cardiovascular effects of selective cyclooxygenase-2 inhibitors. Am J Kidney Dis 2001;38: 1145-1157.
6. Brater D. Effects of non-steroidal antiinflamatory drugs on renal function: focus on cyclooxygenase-2 selective inhibition. Am J Med 1999;107:S65-S71.
7. Ibrahim A, Parks S, Feldman J, Karim A, Kharasch ED. Effects of parecoxib, a parenteral COX-2 specific inhibitor, on the pharmacokinetics and pharmacodynamics of propofol. Anesthesiology 2002; 96:88-95.
8. Noveck R, Laurent A, Kuss M, Talwalker S, Hubbard R. Parecoxib sodium does not impair platelet function in healthy elderly and non-elderly individuals. Clin Drug Invest 2001;21:465-476.
9. Daniels S, Grossman E, Kuss M, Talwalker S, Hubbar R. A double-blind, randomized comparison of intramusculary and intravenously administered parecoxib sodium versus ketorolac and placebo in a post-oral surgery pain model. Clin Therap 2001;23:1018-1031.
10. Tang J, Li S, White PF, Chen X, Wender RH, Quon R, Sloninsky A, Naruse R, Kariger R, Webb T, Norel E. Effect of parecoxib, a novel intravenous cyclooxygenase type-2 inhibitor, on the postoperative opioid requirement and quality of pain control. Anesthesiology 2002;96:1305-1309.
11. Lopez-Muñoz FJ, Salazar LA, Castañeda-Hernandez G, Villarreal JE. A new model to assess analgesic activity: pain-induced functional impairment in the rat (PIFIR). Drug Dev Res 1993;28:169-175.
12. Covino BG, Dubner R, Gybels J, Kosterlitz HW, Liebeskind JC, Sternbach RA, Vyklicky L, Yamamura H, Zimmermann M. Ethical standards for investigations of experimental pain in animals. Pain 1980;9:141-143.
13. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 1983;16:109-110.
14. Lopez-Muñoz FJ. Surface of synergistic interaction between dipyrone and morphine in the PIFIR model. Drug Dev Res 1994;33:26-32.
15. Lopez-Muñoz FJ, Medina R, Cook HJ. Potentiation of the analgesic effect of ibuprofen by caffeine in the PIFIR model. International Congress and Symposium Series 1996;218:43-56.
16. Lopez-Muñoz FJ, Villalón C, Terron JA, Salazar LA. Analgesic interactions produced by dipyrone and either morphine or D-propoxyphene in the pain-induced functional impairment model in rat. Drug Dev Res 1993b;29:299-304.
17. Lopez-Muñoz FJ, Ventura R, Diaz I, Fernandez-Guasti A, Tost D, Cabre F, Mauleon, D. Antinociceptive effects of S(+)-ketoprofen and other analgesic drugs in a rat model of pain induced by uric acid. J Clin Pharmacol 1998;38:11S-21S.
18. Lopez-Muñoz FJ, Ventura R, Diaz I, Hernandez GP, Dominguez AM, Garcia ML. Analysis of antinociceptive effects of flurbiprofen enantiomers in a rat model or arthritic pain. Methods Find Exp Clin Pharmacol 2000;22:641-645.
19. Diaz I, Ventura R, Hernandez G, Dominguez A, Lopez-Muñoz FJ. Effect of caffeine on antinociceptive action of ketoprofen in rats. Arch Med Res 2001;32:13-20.
20. Diaz-Reval M, Ventura R, Deciga M, Terron J, Cabre F, Lopez-Muñoz FJ. Evidence for a central mechanism of action of S-(+)-ketoprofen. Eur J Pharmacol 2004;483:241-248.
21. Lopez-Muñoz FJ, Diaz M, Terron J, Deciga M. Analysis of the analgesic interactions between ketorolac and tramadol during arthritic nociception in rat. Eur J Pharmacol 2004;484:157-165.
22. Deciga M, Lopez-Muñoz FJ. Participation of the NO-cyclic GMP pathway in rofecoxib-induced antinociception. West Pharmacol Soc 2003;46:165-167.
23. Whittle B, Higgs Eakins GA, Moncada KE, S y Vane JR. Selective inhibiton of Prostaglandin production in inflammatory exudate and gastric mucosa. Nature (London) 1980;284:271-277.
24. Lopez-Muñoz FJ, Castañeda G, Flores-Murrieta FJ, Granados-Soto V. Effect of caffeine coadministration and of nitric oxide synthesis inhibition on the antinociceptive action of ketorolac. Eur J Pharma-col 1996;308:275-277.