2009, Number 6
<< Back Next >>
Rev Mex Neuroci 2009; 10 (6)
Neurobiology of depression
Sequeira CA, Fornaguera TJ
Language: Spanish
References: 180
Page: 462-478
PDF size: 198.58 Kb.
ABSTRACT
Depression is a complex disease affecting a considerable percentage of the world population (17-20%). Although none of the
specific brain circuits has been identified yet, research including neuroimaging, post mortem studies and animal models has
pointed out important regions for the physiopathology of the disease. At the same time, some neuronal processes including the
stress response, the immune response, the synaptic transmission and neuronal plasticity involved in the physiopatology of
depression have been identified. So, several neurohormonal, neuronal and neurotrophic processes have been intensely studied
in order to understand the onset and progression of depression. Among these, the hypothalamic-pituitary-adrenal axis, the
monoaminergic transmission, the neurotrophic mechanisms, neurogenesis and cytokines have been studied as important
factors in depression. Recent research suggests that environment exerts a determining effect on the function of these processes.
Adverse events during early development stages are able to modify gene expression through epigenetic mechanisms, becoming
important factors of susceptibility. On the other hand, enriched environments also modify several neurological processes,
acquiring an important role in the development of the disease.
REFERENCES
Páez X, Hernández L, Baptista T. Avances en la terapéutica molecular de la depresión. Rev Neurol 2003; 37(5): 459-70.
Weissman MM, Bland RC, Canino GJ, Faravelli C, Greenwald S, Hwu HG, et al. Cross-national epidemiology of major depression and bipolar disorder. JAMA 1996; 276: 293-9.
Nestler EJ, Gould E, Manji H, Buncan M, Duman RS, Greshenfeld HK. Preclinical models: status of basic research in depression. Biol Psychiatry 2002a; 52: 503-28.
Murray CJL, Lopez AD. Evidence-based health policy: lessons from the Global Burden of Disease Study. Science 1996; 274: 740-3.
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455: 894-902.
Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 2001; 11: 240-9.
Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 2005; 48: 175–87.
Newport DJ, Stowe ZN, Nemeroff CB. Parental depression: animal models of an adverse life event. Am J Psychiatry 2002; 159: 1265-83.
Rush AJ. The varied clinical presentations of major depressive disorder. J Clin Psychiatry 2007; 68 (Suppl. 8): 4-10.
Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry 1999; 156: 837-41.
Koenigs M, Huey ED, Calamia M, Raymont V, Tranel D, Grafman J. Distinct regions of prefrontal cortex mediate resistance and vulnerability to depression. J Neurosci 2008; 28(47): 12341-8.
Campbell S, Macqueen G. The role of the hippocampus in the pathophysiology of major depression. J Psychiatry Neurosci 2004; 29(6): 417-26.
Van Eijndhoven P, van Wingen G, van Oijen K, Rijpkema M, Goraj B, Verkes RJ, et al. Amygdala volume marks the acute state in the early course of depression. Biol Psychiatry 2008; 65(9): 812-18.
Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, et al. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 2008; 33(2): 368-77.
Nutt DJ. Noradrenaline in depression: half a century of progress. J Psychopharmacol 1997; 11: S3.
Neumeister A, Drevets WC, Belfer I, Luckenbaugh DA, Henry S, Bonne O, et al. Effects of alpha2 C-adrenoreceptor gene polymorphism on neural responses to facial expressions in depression. Neuropsychopharmacology 2006; 31: 1750-6.
Stone E, Quartermain D, Lin Y, Lehmann M. Central alpha-1- adrenergic system in behavioral activity and depression. Biochem Pharmacol 2007; 73: 1063-75.
Cabib S, Puglisi-Allegra S. Stress, depression and the mesolimbic dopamine system. Psychopharmacology (Berl.) 1996; 128: 331-42.
Mueller MB, Holsboer F. Mice with mutations in the HPA system as models for symptoms of depression. Biol Psychiatry 2006; 59: 1104-15.
Hayley S, Poulter MO, Merali Z, Anisman H. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 2005; 135: 659-78.
Duman RS, Monteggia LM. A neurotrophic model for stress related mood disorders. Biol Psychiatry 2006; 59: 1116-27.
Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805-9.
Swaab DF, Bao AM, Lucassen PJ. The stress system in the human brain in depression and neurodegeneration. Ageing Res Rev 2005, 4: 141-94.
Wahlberg K, Ghatan PH, Modell S, Nygren A, Ingvar M, Asberg M, et al. Suppressed neuroendocrine stress response in depressed women on job-stress-related long-term sick leave: a stable marker potentially suggestive of preexisting vulnerability. Biol Psychiatry 2009; 65(9): 742-7.
Selye H. A syndrome produced by diverse nocious agents. J Neuropsychiatry Clin Neurosci 1998; 10: 230-1.
Dallman MF, Pecoraro N, Akana SF, La Fleur SE, Gomez F, Houshyar H, et al. Chronic stress and obesity: a new view of “comfort food”. Proc Natl Acad Sci USA 2003; 100(20): 11696-701.
Vitaliano PP, Scanlan JM, Zhang J, Savage MV, Hirsch IB, Siegler IC. A path model of chronic stress, the metabolic syndrome, and coronary heart disease. Psychosom Med 2002; 64(3): 418-35.
Kulkarni S, O’Farrell I, Erasi M, Kochar MS. Stress and hypertension. WMJ 1998; 97(11): 34-8.
Lin H, Katsovich L, , Findley DB, Grantz H, Lombroso PJ, et al. Psychosocial stress predicts future symptom severities in children and adolescents with Tourette syndrome and/or obsessive-compulsive disorder. J Child Psychol Psychiatry 2007; 48(2): 157-66.
Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci 1992; 12(9): 3628-41.
Clark CP, Frank LR, Brown GG. Sleep Deprivation, EEG, and Functional MRI in Depression: Preliminary Results. Neuropsichopharmacology 2001; 25(5): S79-S84.
Levin JM, Ross MH, Renshaw PF. Clinical applications of functional MRI in neuropsychiatry. J Neuropsychiatry 1995; 7(4): 511-22.
Kennedy SH, Javanmard M, Vaccarino FJ. A review of functional neuroimaging in mood disorders: positron emisión tomography and depression. Can J Psychiatry 1997; 42: 467-75.
Sawle GV. Imaging the head: functional imaging. J Neurol Neurosurg Psychiatry 1995; 58: 132-44.
Turner R, Jezzard P, Wen H, Kwong KK, Bihan DL, Zeffiro T, et al. Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 1993; 29: 277-9.
Ogawa S, Menon RS, Kim S, Ugurbil K. On the characteristics of functional MRI of the brain. Ann Rev Biophys Biomolecular Struct 1998; 27: 447-74.
Steffens DC, Krishnan KR. Structural neuroimaging and mood disorders: recent findings, implications for classification, and future directions. Biol Psychiatry 1998; 43(10): 705-12.
Drevets WC. Functional neuroimaging studies of depression: the anatomy of melancholia. Annu Rev Med 1998; 49: 341-61.
Davidson RJ, Pizzagalli D, Nitschke JB, Putnam,KM. Depression: Perspectives from affective neuroscience. Ann Rev Psychol 2002; 53: 545-74.
Drevets WC, Spitznagel E, Raichle ME. Functional anatomical differences between major depressive subtypes. J Cereb B F Metab 1995; 15(1): S93.
Baxter LR, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, et al. Cerebral metabolic rates for glucose in mood disorders. Arch Gen Psychiatr 1985; 42: 441-7.
O’Connor TM, O’Halloran DJ, Shanahan F. The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM 2000; 93(6): 323-33.
Webster JI, EM Sternberg. Role of the hypothalamic–pituitary–adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. J Endocrinol 2004; 181: 207-21.
Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008; 31(9): 464-8.
Birnbaumer M. Vasopressin Receptors. TEM 2000; 11(10): 406-10.
Sheng H, Zhang Y, Sun J, Gao L, Ma B, Lu J, et al. Corticotropinreleasing hormone (CRH) depresses n-methyl-D-aspartate receptormediated current in cultured rat hippocampal neurons via CRH receptor type 1. Endocrinology 2008; 149(3): 1389-98.
Lolait SJ, Stewart LQ, Jessop DS, Young III WS, O’Carroll AM. The hypothalamic-pituitary-adrenal axis response to stress in mice lacking functional vasopressin V1b receptors. Endocrinology 2007; 148(2): 849-56.
Aguilera G, Rabadan-Diehl C. Vasopressinergic regulation of the hypothalamic-pituitary-adrenal axis: implications for stress adaptation. Regul Pept 2000; 96: 23-9.
Flynn NE, Bird JG, Guthrie AS. Glucocorticoid regulation of amino acid and polyamine metabolism in the small intestine. Amino Acids 2009; 37(1): 123-9.
Liberman AC, Druker J, Garcia FA, Holsboer F, Arzt E. Intracellular molecular signaling. Basis for specificity to glucocorticoid antiinflammatory actions. Ann N Y Acad Sci 2009; 1153: 6-13.
Abrahám IM, Meerlo P, Luiten PG. Concentration dependent actions of glucocorticoids on neuronal viability and survival. Dose Response 2006; 4(1): 38-54.
Nichols NR, Agolley D, Zieba M, Bye N. Glucocorticoid regulation of glial responses during hippocampal neurodegeneration and regeneration. Brain Res Rev 2005; 48: 287-301.
Herbert J, Goodyer IM, Grossman AB, Hastings MH, de Kloet ER, Lightman SL, et al. Do corticosteroids damage the brain? J Neuroendocrinol 2006; 18: 393-411.
Sapolsky RM. Why stress is bad for your brain. Science 1996; 273: 749-50.
Bao AM, Meynen G, Swaab DF. The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Res Rev 2008; 57: 531-3.
Stahn C, Löwenberg M, Hommes DW, Buttgereit F. Molecular mechanisms of glucocorticoid action and selective glucocorticoid receptor agonists. Mol Cell Endocrinol 2007; 275: 71-8.
Wikstrom AC. Glucocorticoid action and novel mechanisms of steroid resistance: role of glucocorticoid receptor-interacting proteins for glucocorticoid responsiveness. J Endocrinol 2003; 178: 331-7.
Buttgereit F, Straub RH, Wehling M, Burmester GR. Glucocorticoids in the treatment of rheumatic diseases: an update on the mechanisms of action. Arthritis Rheum 2004; 50: 3408-17.
Nemeroff CB. The corticotropin-releasing factor (CRF) hypothesis of depression: new findings and new directions. Mol Psychiatry 1996; 1: 336-42.
Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847-54.
Lehnert H, Schulz C, Dieterich K. Physiological and neurochemical aspects of corticotropin-releasing factor actions in the brain: the role of the locus coeruleus. Neurochem Res 1998; 23: 1039-52.
Holsboer F, Ising M. Central CRH system in depression and anxiety: evidence from clinical studies with CRH1 receptor antagonists. Eur J Pharmacol 2008; 583(2-3): 350-7.
Dinan TG, Lavelle E, Cooney J, Burnett F, Scott L, Dash A, et al. Dexamethasone augmentation in treatment-resistant depression. Acta Psychiatr Scand 1997; 95: 58-61.
Holsboer F. Stress, hypercortisolism and corticosteroid receptors in depression: implications for therapy. J Affect Disord 2001; 62: 77-91.
Liu Z, Zhu F, Wang G, Xiao Z, Wang H, Tang J, et al. Association of corticotrophin-releasing hormone receptor1 gene SNP and haplotype with major depression. Neurosci Lett 2006; 404: 358-62.
Heuser I, Bissette G, Dettling M, Schweiger U, Gotthardt U, Schmider J, et al. Cerebrospinal fluid concentrations of corticotropin-releasing hormone, vasopressin, and somatostatin in depressed patients and healthy controls: response to amitriptyline treatment. Depress Anxiety 1998; 8: 71-9.
Keck ME, Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders. Peptides 2001; 22: 835-44.
Grammatopoulos DK, Chrousos GP. Functional characteristics of CRH receptors and potential clinical applications of CRH-receptor antagonists. Trends Endocrinol Metab 2002; 13: 436-44.
Purba JS, Hoogendijk WJ, Hofman MA, Swaab DF. Increased number of vasopressin- and oxytocin-expressing neurons in the paraventricular nucleus of the hypothalamus in depression. Arch Gen Psychiatry 1996; 53: 137-43.
Dinan TG, Lavelle E, Scott LV, Newell-Price J, Medbak S, Grossman AB. Desmopressin normalizes the blunted adrenocorticotropin response to corticotropin-releasing hormone in melancholic depression: evidence of enhanced vasopressinergic responsivity. J Clin Endocrinol Metab 1999; 84: 2238-40.
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 4th Ed. Washington, D.C.: 1994.
Mlynarik M, Zelena D, Bagdy G, Makara GB, Jezova D. Signs of attenuated depression-like behavior in vasopressin deficient Brattleboro rats. Horm Behav 2006; 51(3): 395-405.
Legros JJ. Inhibitory effect of oxytocin on corticotrope function in humans: are vasopressin and oxytocin ying-yang neurohormones? Psychoneuroendocrinology 2001; 26: 649-55.
Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81: 629-83.
Meynen G, Unmehopa UA, Hofman MA, Swaab DF, Hoogendijk WJ. Hypothalamic oxytocin mRNA expression and melancholic depression. Mol Psychiatry 2007; 12: 118-9.
Cameron HA, McKay RD. Restoring production of hippocampal neurons in old age. Nat Neurosci 1999; 2: 894-7.
Rogatsky I, Trowbridge JM, Garabedian MJ. Glucocorticoid receptormediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol 1997; 17: 3181-93.
Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrine Revs 1986; 7: 284-301.
Jameison K, Dinan TG. Glucocorticoids and cognitive function: from physiology to pathophysiology. Hum Psychopharmacol 2001; 16(4): 293-302.
Bremner JD, Vythilingam M, Vermetten E, Anderson G, Newcomer JW, Charney DS. Effects of glucocorticoids on declarative memory function in major depression. Biol Psychiatry 2004; 55(8): 811-5.
Pariante CM. The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 2006; 20: 79-84.
Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs. low CRH/NE states. Mol Psychiatry 2002; 7(3): 254-75.
Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28: 435-51.
Nelson N. The family of Na +/Cl- neurotransmitter transporters. J Neurochem 1998; 71: 1785-803.
Masson J, Sagne C, Hamon M, El Mestikawy S. Neurotransmitter transporters in the central nervous system. Pharmacol Rev 1999; 51: 439-64.
Kopin IJ. Catecholamine metabolism: basic aspects and clinical significance. Pharmacol Rev 1985; 37: 333-64.
Shih JC. Molecular basis of human MAO A and B. Neuropsychopharmacology 1994; 4: 1-7.
Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965; 122: 509-22.
Hindmarch I. 2002. Beyond the monoamine hypothesis: mechanisms, molecules and methods. Eur Psychiatry 2002; 17 s3: 294-9.
Millan MJ. The role of monoamines in the actions of established and “novel” antidepressant agents: a critical review. Eur J Pharmacol 2004; 500: 371-84.
Berton O, Nestler EJ. New approaches to antidepressant drug discovery: beyond monoamines. Nature Rev Neurosci 2006; 7: 137-51.
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM, et al. Neurobiology of depression. Neuron 2002b; 34: 13–25.
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33: 88-109.
Hu H, Real E, Takamiya K, Kang MG, Ledoux J, Huganir RL, et al. Emotion enhances learning via norepinephrine regulation of AMPAreceptor trafficking. Cell 2007; 131: 160-73.
Svenningsson P, Chergui K, Rachleff I, Flajolet M, Zhang X, El Yacoubi M, et al. Alterations in 5-HT1B receptor function by p11 in depression-like states. Science 2006; 311: 77-80.
Ruhe HG, Mason NS, Schene AH. Mood is indirectly related to serotonin, norepinephrine and dopamine levels in humans: a meta-analysis of monoamine depletion studies. Mol Psychiatry 2007; 12: 331-59.
Reichardt LF. Neurotrophin-regulated signalling pathways. Phil Trans R Soc B 2006; 361: 1545-64.
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4: 299-309.
Lee R, Kermani P, Teng KK, Hempstead BL. Regulation of cell survival by secreted proneurotrophins. Science 2001; 294: 1945-8.
Bishop JF, Mueller GP, Mouradian MM. Alternate 5’ exons in the rat brain-derived neurotrophic factor gene: differential patterns of expression across brain regions. Brain Res Mol Brain Res 1994; 26: 225-32.
Buchman VL, Sporn M, Davies AM. Role of transforming growth factor-beta isoforms in regulating the expression of nerve growth factor and neurotrophin-3 mRNA levels in embryonic cutaneous cells at different stages of development. Development 1994; 120: 1621–9.
Koibuchi N, Fukuda H, Chin WW. Promoter specific regulation of the brain-derived neurotropic factor gene by thyroid hormone in the developing rat cerebellum. Endocrinology 1999; 140: 3955-61.
Toran-Allerand CD. Mechanisms of estrogen action during neural development: mediation by interactions with the neurotrophins and their receptors? J Steroid Biochem Mol Biol 1996; 56: 169-78.
Lindholm D, Heumann R, Meyer M, Thoenen H. Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 1987; 330: 658-9.
Hu Y, Russek SJ. BDNF and the diseased nervous system: a delicate balance between adaptive and pathological processes of gene regulation. J Neurochem 2008; 105: 1-17.
Tao X, West AE, Chen WG, Corfas G, Greenberg ME. A calciumresponsive transcription factor, CaRF, that regulates neuronal activitydependent expression of BDNF. Neuron 2002; 33: 383-95.
Alder J, Thakker-Varia S, Bangasser DA, Kuroiwa M, Plummer MR, Shors TJ, Black IB. Brain-derived neurotrophic factor-induced gene expression reveals novel actions of VGF in hippocampal synaptic plasticity. J Neurosci 2003; 23: 10800-8.
Eisch AJ, Bolaños CA, de Wit J, Simonak RD, Pudiak CM, Barrot M, et al. Brain-derived neurotrophic factor in the ventral midbrain-nucleus accumbens pathway: a role in depression. Biol Psychiatry 2003; 54: 994-1005.
López-León S, Janssens AC, González-Zuloeta Ladd AM, Del- Favero J, Claes SJ, Oostra BA, et al. Meta-analyses of genetic studies on major depressive disorder. Mol Psychiatry 2007; 13: 772-85.
Castrén E, Voikar V, Rantamäki T. Role of neurotrophic factors in depression. Curr Opin Pharmacol 2007; 7: 18-21.
Vollmayr B, Mahlstedt MM, Henn FA. Neurogenesis and depression: what animal models tell us about the link. Eur Arch Psychiatry Clin Neurosci 2007; 257: 300-3.
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 2000; 20: 9104-10.
Henn FA, Vollmayr B. Neurogenesis and depression: etiology or epiphenomenon? Biol Psychiatry 2004; 56: 146-50.
Cunningham KA, Watson CS. Cell cycle regulation, neurogenesis, and depression. Proc Natl Acad Sci USA 2008; 105(7): 2259-60.
Goldapple K, Segal Z, Garson C, Lau M, Bieling P, Kennedy S, et al. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 2004; 61: 34-41.
Dalla C, Bangasser DA, Edgecomb C, Shors TJ. Neurogenesis and learning: acquisition and asymptotic performance predict how many new cells survive in the hippocampus. Neurobiol Learn Mem 2007; 88(1): 143-8.
Barnes PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118(11): 3546-56.
Smith KA, Griffin JD. Following the cytokine signaling pathway to leukemogenesis: a chronology. Clin Invest 2008; 118(11): 3564-73.
Steinman L. Nuanced roles of cytokines in three major human brain disorders. J Clin Invest 2008; 118(11): 3557-63.
Maes M, Bosmans E, Suy E, Vandervorst C, de Jonckheere C, Minner B, et al. Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1b and soluble interleukin-2 receptor production. Acta Psychiatry Scand 1991; 84: 379-86.
Licinio J, Wong ML. The role of inflammatory mediators in the biology of major depression: central nervous system cytokines modulate the biological substrate of depressive symptoms, regulate stressresponsive systems, and contribute to neurotoxicity and neuroprotection. Mol Psychiatry 1999; 4: 317-27.
Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatr 2005; 29(2): 201-17.
Capuron L, Miller AH. Cytokines and psychopathology: lessons from interferon-alpha. Biol Psychiatry 2004; 56: 819-24.
Capuron L, Fornwalt FB, Knight BT, Harvey PD, Ninan PT, Miller AH. Does cytokine-induced depression differ from idiopathic major depression in medically healthy individuals? J Affect Disord 2009. En prensa. Disponible en: www.scienciedirect.com Accesado: mayo 14, 2009.
De Beaurepaire R. Questions raised by the cytokine hypothesis of depression. Brain Behav Immun 2002; 16: 610-7.
Anisman H, Merali Z. Cytokines, stress, and depressive illness. Brain Behav Immun 2002; 16(5): 513-24.
Dantzer R. Cytokine-induced sickness behaviour: a neuroimmune response to activation of innate immunity. Eur J Pharmacol 2004; 500: 399-411.
Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 2006; 27(1): 24-31.
Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 47-57.
Mauri MC, Ferrara A, Boscati L, Bravin S, Zamberlan F, Alecci M, et al. Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 1998; 37: 124-9.
Chen Q, Surmeier DJ, Reiner A. NMDA and non-NMDA receptor mediated excitotoxicity are potentiated in cultured striatal neurons by prior chronic depolarization. Exp Neurol 1999; 159: 283-96.
Muller N, Schwarz MJ. The immune-mediated alteration of serotonin and glutamate: towards an integrated view of depression. Mol Psychiatry 2007; 12: 988-1000.
Grinevich V, Harbuz M, Ma XM, Jessop D, Tilders FJ, Lightman SL, et al. Hypothalamic pituitary adrenal axis and immune responses to endotoxin in rats with chronic adjuvant-induced arthritis. Exp Neurol 2002; 178: 112-23.
Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stressrelated disorders. Am J Psychiatry 2003; 160: 1554-65.
Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 2009; 65(3): 191-7.
Nestler EJ. Epigenetic Mechanisms in Psychiatry. Biol Psychiatry 2009; 65: 189-90.
Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, et al. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008; 320(5880): 1224-9.
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128: 693-705.
Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007; 128: 669-81.
Grewal SI, Gia J. Heterochromatin revisited. Nat Rev Genet 2007; 8(1): 35-46.
Gräff J, Mansuy IM. Epigenetic codes in cognition and behaviour. Behav Brain Res 2008; 192: 70-87.
Bredy TW. Behavioural epigenetics and psychiatric disorders. Med Hypotheses 2007; 68(2): 453.
Docherty S, Mill J. Epigenetic mechanisms as mediators of environmental risks for psychiatric disorders. Psychiatry 2008; 7(12): 500-6.
Abdolmaleky HM, Smith CL, Faraone SV, Shafa R, Stone W, Glatt SJ, et al. Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation. Am J Med Genet B Neuropsychiatr Genet 2004; 127B(1): 51-9.
Fish EW, Shahrokh D, Bagot R, Caldji C, Bredy T, Szyf M, et al. Epigenetic Programming of Stress Responses through Variations in Maternal Care. Ann NY Acad Sci 2004; 1036: 167-80.
Meaney MJ. The development of individual differences in behavioral and endocrine responses to stress. Annu Rev Neurosci 2001; 24: 1161-92.
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9(4): 519-25.
Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447: 425-32.
Szyf M, Weaver I, Meaney M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod Toxicol 2007; 24: 9-19.
Rupniak NMJ. Animal models of depression: challenges from a drug development perspective. Behavioural Pharmacol 2003; 14(5): 385-90.
Matthews K, Christmas D, Swan J, Sorrell E. Animal models of depression: navigating through the clinical fog. Neurosci Biobehav Rev 2005; 29(4-5): 503-13.
Porsolt RD, Pichon ML, Jalife M. Depression: a new model sensitive to the antidepressant treatment. Nature 1977; 266: 730-2.
Dalvi A, Lucki I. Murine models of depression. Psychopharmacology (Berl.) 1999; 147: 14-6.
Thierry B, Steru L, Simon P, Porsolt RD. The tail suspension test: Ethical considerations. Psychopharmacology (Berl.) 1986; 90: 284-5.
Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan JF. Genetic and pharmacological evidence of a role for GABA(B) receptors in the modulation of anxiety- and antidepressantlike behavior. Neuropsychopharmacology 2004; 29: 1050-62.
Sherman A, Allers GL, Petty J, Henn FA. A neuropharmacologically relevant animal model of depression. Neuropharmacology 1979; 18: 891-3.
Thiébot M-H, Martin P, Puech AJ. Animal behavioural studies in the evaluation of antidepressant drugs. Br J Psychiatry 1992; 160: 44-50.
Tamashiro KL, Nguyen MM, Sakai RR. Social stress: from rodents to primates. Front Neuroendocrinol 2005; 26: 27-40.
Hofer MA. Multiple regulators of ultrasonic vocalization in the infant rat. Psychoneuroendocrinology 1996; 21: 203-17.
Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 1992; 16: 525-34.
Brenes JC, Rodríguez O, Fornaguera J. Differential effect of environment enrichment and social isolation on depressive-like behavior, spontaneous activity and serotonin and norepinephrine concentration in prefrontal cortex and ventral striatum. Pharmacol Biochem Behav 2008; 89(1): 85-93.
Barr CS, Newman TK, Becker ML, Parker CC, Champoux M, Lesch KP, et al. The utility of the non-human primate; model for studying gene by environment interactions in behavioral research. Genes Brain Behav 2003; 2(6): 336-40.
Ferguson JM. Depression: Diagnosis and Management for the Primary Care Physician. Prim Care Companion J Clin Psychiatry 2000; 2(5): 173-8.
Rosenzweig MR, Bennett EL, Hebert M, Morimoto H. Social grouping cannot account for cerebral effects of enriched environments. Brain Res 1978; 153: 563-76.
Brenes JC, Fornaguera J. Effects of environmental enrichment and social isolation on sucrose consumption and preference: associations with depressive-like behavior and ventral striatum dopamine. Neurosci Lett 2008; 436(2): 278-82.
Sale A, Berardi N, Maffei L. Enrich the environment to empower the brain. Trends Neurosci. 2009; 32(4): 233-9.
Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386: 493-5.
Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, et al. Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci USA 2000; 97(23): 12880-4.
Young D, Lawlor PA, Leone P, Dragunow M, During MJ. Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective. Nat Med 1999; 5: 448-53.
Escorihuela RM, Fernandez-Teruel A, Tobena A, Vivas NM, Marmol F, Badia A, et al. Early environmental stimulation produces longlasting changes on beta-adrenoceptor transduction system. Neurobiol Learn Mem 1995; 64: 49-57.
Hattori S, Hashimoto R, Miyakawa T, Yamanaka H, Maenoe H, Wada K, et al. Enriched environments influence depression-related behavior in adult mice and the survival of newborn cells in their hippocampi. Behav Brain Res 2007; 180: 69-76.
Brenes-Sáenz JC, Rodríguez-Villagra O, Fornaguera-Trías J. Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behav Brain Res 2006;169: 57–65.
Brenes JC, Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res 2009; 198: 199-205.
Laviola G, Hannan AJ, Macrì S, Solinas M, Jaber M. Effects of enriched environment on animal models of neurodegenerative diseases and psychiatric disorders. Neurobiol Dis 2008; 31: 159-68.
Nithianantharajah J, Hannan AJ. Enriched environments, experience dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 2006; 7: 697-709.
Veena J, Srikumar1 BN, Raju TR, B.S. Shankaranarayana-Rao BS. Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett 2009; 455: 178-82.
Pham TM, Winblad B, Granholm AC, Mohammed AH. Environmental influences on brain neurotrophins in rats. Pharmacol Biochem Behav 2002; 73: 167-75.
Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 1999; 98: 739-55.
Lee J, Duan W, Mattson MP. Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 2002; 82(6):1367-75.
Rossi C, Angelucci A, Costantin L, Braschi C, Mazzantini M, Babbini F, et al. Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. Eur J Neurosci 2006; 24(7): 1850-6.