2013, Number 2
<< Back
Investigación en Discapacidad 2013; 2 (2)
Clinical outcome of central neurological damage as a result of anoxia and ischemia. Evaluation by electroencephalogram. Case report
Brust CH, Hernández AC, Galicia AM, Sánchez QA, Flores ÁB, Yáñez SO, Carrillo-Mora P
Language: Spanish
References: 33
Page: 86-98
PDF size: 281.35 Kb.
ABSTRACT
Brain damage is the main cause of disability worldwide. Diverse procedures have been focused for quantitative assessment of central nervous system improvement but an absolute agreement has been not achieved. Follow-up by quantitative electroencephalogram was a reliable resource in present case. A woman aged 43, sustained postpartum uterine massive bleeding that required hysterectomy in december 2010, evolving into hypovolemic shock and a shallow comma as well as cardiac arrest. Patient survived after reanimation maneuvers at an Intensive Care Unit. She was admitted into our institution by early 2011 where a neurological rehabilitation program was given. A critical condition was present since only brain stem reflexes were present. Serial electroencephalogram and neuroimaging tests revealed patient’s evolution from an initial sluggish recording and a reduced spectral power density indicating severe cortico-cortical damage, into a progressive improvement in δ, Θ, α and β waves. Gradual activation of α and β (synchronization/disinchronization) was observed, with a predominance of right hemisphere. Those changes were congruent to the observed clinical improvement in motor and sensory reflexes as well as low conscious capacity. The spectral power density kept on improvement with reduction in relative power of Θ, less of δ but with an increase in α and β. That indicates a partial recovery of reticular-thalamic-cortical circuits, which were responsible of a minimal awaking condition. In conclusion, relevance of brain the spectral power density serial evaluation by quantitative electroencephalogram must be remarked, altogether with clinical examination. Main prognostic predictor is the a activity.
REFERENCES
INEGI. Censo de Población y Vivienda 2010, cuestionario ampliado. México: 2010. [Septiembre de 2012]. Disponible en: http://www.cuentame.inegi.org.mx/poblacion/discapacidad.aspx?tema=P%20mort
INEGI. Causas de defunción. Defunciones generales totales por principales causas de mortalidad. México: 2011. [Septiembre de 2012]. Disponible en: http://www.inegi.org.mx/sistemas/sisept/Default. spx?t=mdemo107&s=est&c=23587.
CENAPRA. Perfil accidentes de tráfico. República Mexicana. México: Observatorio Nacional de Lesiones, CENAPRA; 2010. [Septiembre de 2012]. Disponible en: http://www.cenapra.salud.gob.mx/CENAPRA_2010/estadisticas/Perfil_Nacional_2008-2.pdf
Secretaría de Salud. Programa de acción: enfermedades cardiovasculares e hipertensión vascular. México: Secretaría de Salud; 2001.
Cabrera A, Martínez O, Laguna G, Juárez R, Rosas V, Loria J et al. Epidemiología de la enfermedad vascular cerebral en hospitales de la Ciudad de México. Estudio multicéntrico. Med Int Mex. 2008; 24 (2): 98-103.
Buzsáki G, Draguhn A. Neuronal oscillation in cortical networks. Science. 2004; 30: 1926-1929.
Buzsáki G. Neural syntax: cell assemblies, synapsembles, and readers. Neuron. 2010; 68: 362-385.
Pfurstscheller G. The cortical activation model (CAM). Prog Brain Res. 2006; 159: 19-27.
Sakurai Y. The search for cell assemblies in the working brain. Behav Brain Res. 1998; 91: 1-13.
Gardner EP, Johnson KO. The somatosensory system: receptors and central pathways. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Huspeth AJ. Principles of neural science. 5th edition. New York: McGraw Hill Medical; 2013: pp. 475-497.
Llinás RR, Steriade M. Bursting of thalamic neurons and states of vigilance. J Neurophysiol. 2006; 95: 3297-3308.
Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev. 2009; 29: 169-195.
Giacoppo S, Bramanti P, Barresi M, Celi D, Foti Cuzzola V, Palella E et al. Predictive biomarkers of recovery in traumatic brain injury. Neurocrit Care. 2012; 16: 470-477.
Demiralp T, Bayraktaroglub Z, Ergenb M, Beydagia H, Uresinc Y, Ergenoglua T. Alpha rhythm of the EEG modulates visual detection performance in humans. Cogn Brain Res. 2004; 20: 376-383.
Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative EEG in mild traumatic brain injury. Clin Neurophysiol. 2005; 116: 2001-2025.
Brust-Carmona H, Galicia M, Flores Avalos B, Borunda Falcón, Yáñez O. Las neurociencias en el diagnóstico y en la evaluación de la rehabilitación integral de secuelas de lesiones cerebrales en el INR. Investigación en Discapacidad. 2013; 2: 28-37.
Ramoser H, Muller-Gerking J, Pfurtscheller G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng. 2000; 8: 441-446.
Lutzenberger W, Elbert T, Birbaumer N, Ray WJ, Schupp H. The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks. Brain Topography. 1992; 1: 27-34.
Brust-Carmona H, Valadez G, Flores AB, Martínez JA, Sánchez A, Rodríguez MA et al. Potencia absoluta de oscilaciones corticales y su distribución topográfica en una muestra de adultos jóvenes en vigilia inactiva y en atención inespecífica. Rev Inv Clínica. 2013; 65: 52-64.
Arciniega DB. Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. Int J Psychophysiol. 2011; 82: 41–52.
Hummel F, Gerloff C. Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. Cereb Cortex. 2005; 15: 670-678.
Fries P. Mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trend Cogn Sci. 2005; 9: 474-480.
Foxe JJ, Simpson GV, Ahlfors SP. Parieto-occipital approximately 10 Hz activity reflects anticipatory state of visual attention mechanisms. Neuroreport. 1998; 9: 3929-3933.
Odriozola FA, Iriarte IM, Mendia GA, Murgialdai A, Garde PM. Pronóstico de las secuelas tras la lesión cerebral. Med Intensiva. 2009; 33: 171-181.
Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M et al. Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma. 2007; 24: 579-590. doi:10.1089/neu.2006.0146
Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004; 5: 42. doi: 10.1186/1471-2202-5-42
Kopell N, Kramer MA, Malerba P, Whittington MA. Are different rhythms good for different functions? Front Hum Neurosci. 2010; 4: 187. doi: 10.3389/fnhum.2010.00187.
Singer W, Tononi G, Sporns O. From complex networks to intelligent systems. In: Creating brain like intelligence. Lecture Notes in Computer Science. 2009; 5439: 15-30. doi: 10.1007/998-3-642-00616-6-2.
Lopes da Silva FH, Vos JE, Mooibroek J, Van Rotterdam A. Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroenceph Clin Neurophysiol. 1980; 50: 449-456.
Roche RA, Dockreea PM, Garavan H, Foxeb JJ, Robertson IH, O’Mara SM. EEG alpha power changes reflect response inhibition deficits after traumatic brain injury (TBI) in humans. Neurosc Lett. 2004; 362: 1-5.
Basetti C, Bomio F, Mathis J, Hess CW. Early prognosis in coma after cardiac arrest: a prospective clinical, electrophysiological and biochemical study of 60 patients. J Neurol Surg Psychiatry. 1996; 6: 610-615.
ICIDH-2 International classification of functioning and disability. Beta 2 Draft. Full Version. Geneva World Health Organization.
Schierhout G, Roberts I. Fármacos antiepilépticos para la prevención de convulsiones después de una lesión cerebral traumática aguda (revisión Cochrane traducida). La Biblioteca Cochrane Plus [revista en internet]. 2008; 2. Disponible en: http://www.update-software.com