2002, Number 2
<< Back Next >>
Microbiología 2002; 44 (2)
Determination of the profile of fatty acids of 4 species of Shigella spp by chromatography of gases
Robles VE, Hurtado BMD, González AME, Ramírez GP, Durán DA, Ayala PR, Martínez PME
Language: English
References: 26
Page: 69-74
PDF size: 62.12 Kb.
ABSTRACT
Shigella boydii, Shigella flexneri, Shigella dysenteriae and
Shigella sonnei were identified using gas chromatography instead of the traditional techniques. Their acid methyl esters profiles were determined using a gas chromatograph Hewlett Packard 5890A and a RSL-150 heliflex capillary column. A total of 192 samples were analyzed both reference strains (ATCC 8700, INDRE B2188, B2194 and B2199) and environmental isolates. 12 fatty acids were included in the profiles from which 3-hydroxytetradecanoic acid (peak 12), trans 9-octadecanoic acid (peak 22), heptadecanoic acid (peak 18) and octadecanoic acid (peak 23), were the most important for the differentiation of the species analyzed.
REFERENCES
Abel K. D., Schmertzing H. S., Peterson J. I. 1963. Classification of microorganisms by analysis of chemical composition feasibility utilizing gas chromatography. J. Bacteriol. 85:1039–1044.
Annous B. A ., Kozempel M. and Kurantz M. J,. 1999. Changes in membrane fatty acid composition of Pediococcus sp. Strain NRRL B-2354 in response to growth conditions and its effect on thermal resistance. Appl. Environ. Microbiol. 65: 2857-2862.
Basile F., Voorhess K. J. & Hadfield T. L. 1995. Micoorganism gram-type differentiation based on pyrolysis-mass spectrometry of bacterial fatty acid methyl ester extracts. Appl. Environ. Microbiol. 61: 1534-1539.
Boe B. and J. Gjerde. 1980. Fatty acids patterns in the classification of some representatives of the families Enterobacteriaceae and Vibrionaceae. J. Gen. Microbiol. 116:41– 49.
Böttger E.C. 1996. Approaches for identification of microorganisms. ASM News 62 (5):247-250.
Bousfield I. J., Smith G.L., Dando T. R. & Hobbs G.. 1983. Numerical analysis of total fatty acid profiles in the identification of coryneform, nocardioform and some other bacteria. J. Gen. Microbiol. 129:375-394.
Cohen D., Sela T., Slepon R., Yavzori M., Ambar R., Orr N., Robin G., Shpielberg O., Eldad A., Green M. 2001. Prospective Cohort Studies of Shigellosis During Military Field Training. Eur J. of Clin. Microbiol. Infect. Dis. 20 (2):123-126
Cookson B., Talsania H., Chinn S. and Phillips I. 1989. A qualitative and quantitative study of the Streptococcus nilleri whith capillary gas chromatography. J. Gen. Microbiol. 135:831–838.
Freemand A. B. 1985.. Microbiología de Burrows veintidocesava edición Ed. Interamericana. Glass, R. L. 1971 Alkoholisis, saponification and preparation of fatty acids methyl esters. Lipids. 6:919.
Heinrich, D. y D. 1985. Hess Chemotactic attraction of Azospirillum lipoferum by wheat roots and characterization of some attractans, Can. J. Microbiol. 31:26-31.
Häusler J. & Richter V. 1983. A process of identification of microorganisms using chromatography, US patent Application. GB 2 121-434 a.
Irina V. T,, Gennadi M. Z., Anatoli G. L. & Mirja S. S.. 1999. Effect of aromatic compounds on cellular fatyy acids composition of Rhodococcus opacus. Appl. Environ. Microbiol. 65 (2): 853-855.
Jantzen E., Kanudsen E. and Winsnes R.. 1982. Fatty acids analysis for differentiation of Bordetella and Brucella spp. Acta Path. Microbiol. Immunol. Scand. 90: 353 – 359.
McDonough P. L., Fogelman D., Shin S. J., Brunner M. A. and Lein D. H.. 1999. Salmonella enterica serotype Dublin infection: an emerging infectious disease for the Northeastern United States. J. Clin Microbiol 37: 2418-2427.
Mayberry W. R. 1981. Dihydroxy and monohydroxy fatty acids in Legionella pneumoniae J. Bacteriol. 147 (2): 373 –381.
Moss C. W., Dess S. B. and Guerrand G. O. 1980. Gas liquid chromatography of bacterial fatty acids with afused silica capillary column. J. Clin. Microbiol. 15:308–311.
Murray R.P., Baron E. J. Pfaller M. A. Tenover F. C. and Yolken R. H.. 1995. Manual of clinical microbiology, sexta Ed. ASM press, Washington D. C.
Noble P. A., Almeida J. S. & Lovell C. R., 2000. Application of neural computing methods for interpreting phospholipid fatty acid profiles of natural microbial communities. Appl. Environ. Microbiol. 66: 694-699.
Robles, V. E., A. M. González, M. M. Sáinz. G. P. Ramírez R. V. Martínez. 1994. Determination of cellular fatty acids of Klebsiella ozaenae by gas chromatography. Rev. Rom. Biochim. 31:51-55
Robles V. E., Ramírez G. P., González A. M.E., Sáinz M. M. G., Martínez R. B., Durán D. A., and Chávez R. D. 1999. Aplicación de la cromatografía de gases en la identificación de Enterobacter cloacae, Enterobacter aerogenes y Enterobacter agglomerans. Rev. Latinoam. Microbiol . 41:11–16.
Sansonetti P.J. 2001. Rupture, invasion and inflammatory destruction of the intestinal barrier by Shigella, making sense of prokaryote-eukaryote cross-talks FEMS Microbiol. Rev. 25 (1):3-14
Srinivas A., Portaels F. and Larson L. 1994. Systematic study of the 3hidroxy fatty acids composition of Mycobacteria. J. Bacteriol. 176 (10):2962-2969.
Steele, M. McNab. W.B., Read S., Poppe C., Harris L., Lammerding A.M. Odumeru J.A.. 1997. Analysis of whole-cell fatty acid profiles of verotoxigenic Escherichia coli and Salmonella enteritidis with the microbial identification system. Appl. Environ Microbiol 63: 757-760.
Tsitko I. V., Zaitzev G. M. Lobanok A. G. & Salkinoja –Salonen M. S.. 1999. Effect of aromatic compounds on cellular fatty acid composition of Rhodococcus opacus. Appl. Environ. Microbiol. 65: 853-855.
Urdaci M. C., Marchaad M. & Grimont P. A. D. 1990. Characterization of 22 Vibrio species by gas chromatography analysis of their cellular fatty acids. Institute Pasteur. Res. Microbiol. 141: 437-452.
Wallace L. P., Hollins D. G., Weaver R. E. and Moss C. W. 1988. Cellular fatty acid composition of Kingella spp., Cardiobacterium hominis and Eikinella corrodens. J. Clin. Microbiol. 26 (8):1592-1594.