2012, Number 2
Next >>
Rev Mex Periodontol 2012; 3 (2)
Biofunctionalization of modified titanium surfaces: in vitro evaluation. An innovative option in the field of implantology
López-Aldrete A, Hernández SAE, Alvarado EKN, Silva-Herzog FD, Terán FY, Pérez LJE
Language: Spanish
References: 13
Page: 58-64
PDF size: 659.97 Kb.
ABSTRACT
Antecedents: Bioactived titanium surfaces can be a good choice in the field of implantology, having a surface with bone-stimulating factors.
Objective: The development of this research was to modify titanium surfaces and evaluated with primary cultures of rat osteoblasts.
Material and methods: Titanium surfaces modified with polymers. Characterization of the surfaces by means of infrared spectroscopy. Modified surfaces were evaluated with primary cultures of osteoblasts from rat calvaria of two techniques using microscopy (SEM and AFM) as well as analysis techniques by electrophoresis and Western blot.
Results: The results show that surface modification of titanium has inductive effects on the expression of adhesion molecules rat osteoblasts (OBr).
Conclusions: This work provides a very interesting parameter in the modification of surfaces and their potential applications in different areas such as dental implantology, apical surgery and periodontology.
REFERENCES
Black J, Hastings G (eds). Handbook of Biomaterial Properties. Springer, UK: Chapman & Hall; 1998. pp. 135-143.
Kamila, Morris. Considerations for the Biocompatibility. Evaluation of Medical Devices. USA: Medical Device & Diagnostic Industry; 2001. p. 236-240.
Dunn MG & Maximan J. Biomaterials used in orthopaedic surgery. Boca Raton, FL: CRC Press; 1994. pp. 229-252.
López Aldrete A. Inmovilización de proteínas en superficies biocompatibles. Tesis de Maestría. Maestría en Endodoncia. UASLP; 2005.
Schuler M, Owen GRh, Hamilton DW, de Wild M, Textor M, Brunette DM et al. Biomimetic modification of titanium dental implant model surfaces using the RGDSP-peptide sequence: A cell morphology study. Biomaterials 2006; 27 (21): 4003-4015.
Tang ZG, Hunt JA. The effect of PLGA doping of polycaprolactone film on the control of osteoblast behavior and profileration in vitro. Biomaterials 2006; 27 (25): 4409-4418.
Silverstein RM, Bassler GC, Morrill TC. Identificación espectrométrica de compuestos orgánicos. México, D.F.: Editorial Diana; 1980. pp. 85-132.
Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG. The Handbook of Infrared and Raman Spectroscopy Characteristic Frequencies of Organic Molecules. San Diego, NC: Academic Press; 1991. pp. 9-28.
López-Aldrete A, Silva-Herzog Flores D, Hernández Salinas AE, Palestino EAG, Sayao S, Terán FY et al. Bioactivation with alkaline phosphatase of modified surfaces of titanium and glass for the growth of human periodontal ligament fibroblasts. Rev ABO Nac 2011; 18 (6): 368-372.
Wennerberg A, Albrektsson T, Lindhe J. Surface topography of dental implants. Clinical Periodontology and Implant Dentistry. Munksgaard, UK: Blackwell; 2003. pp. 89-94.
Davies J. Bone bonding at natural and biomaterial surfaces. Biomaterials 2007; 28: 5058-5067.
Shin-Hee Jun, Eun-Jung Lee, Se-Won Yook, Hyoun-Ee Kim, Hae-Won Kim, Young-Hag Koh. A bioactive coating of a silica xerogel/chitosan hybrid on titanium by a room temperature sol–gel process. Acta Biomaterialia 2010; 6: 302–307.
Ning C, Jianwen D, Qiangxiu W, Quansheng M, Chengqian X, Musen L. An experimental bone defect healing with hydroxyapatite coating plasma sprayed on carbon/carbon composite implants. Surface & Coatings Technology 2010; 205: 1150–1156.