2011, Number 3
<< Back Next >>
Rev Invest Clin 2011; 63 (3)
Bioactivity of thyroid hormones. Clinical significance of membrane transporters, deiodinases and nuclear receptors
Solís JC, Orozco A, García C, Robles-Osorio L, Valverde C
Language: Spanish
References: 104
Page: 287-308
PDF size: 269.67 Kb.
ABSTRACT
The study of the different factors regulating the bioactivity
of thyroid hormones is of utmost relevance for an adequate
understanding of the glandular pathophysiology. These factors
must be considered by the clinician in order to achieve a
successful diagnosis and treatment of glandular diseases.
Among the factors regulating bioactivity of thyroid hormones
are the following: A) Plasmatic membrane hormone transporters,
which tissue-specific expression is responsible for the
cellular uptake of hormones, B) A set of deiodinating enzymes
which activate or inactivate intracellular thyroid hormone, and
C) Nuclear receptors which are responsible for the different
cellular responses at the transcriptional level. This review
compiles analysis and discusses the most recent findings
regarding the regulation of thyroid hormone bioactivity, as well
as the clinical relevance of different polymorphisms and
mutations currently described for membrane transporters and
deiodinases. In addition, the main issues and present and
future study areas are identified.
REFERENCES
Braverman LE, Utiger RD (eds). Werner and Ingbar’s The Thyroid. A Fundamental and Clinical Text. 9th. Ed. New York: Lippincott Williams & Wilkins; 2005.
Solís-S JC, Valverde-RC. Hipotiroidismo neonatal: fisiopatogenia, aspectos moleculares, metabólicos y clínicos. Rev Invest Clin 2006; 58: 318-34.
Chan SY, Vasilopoulou EE, Kilby MD. The role of the placenta in thyroid hormone delivery to the fetus. Nature Clin Practice Endocrinol Metab 2009; 5: 45-54.
Laurberg P. Thyroid function: Thyroid hormones, iodine and the brain-an important concern. Nat Rev Endocrinol 2009; 5: 475-6.
Germain DL St, Galton VA, Hernandez A. Minireview: Defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology 2009; 150: 1097-107.
Horn S, Heuer H. Review. Thyroid hormone action during brain development: More questions than answers. Mol Cell Endocrinol 2010; 315: 19-26.
Zimmermann MB. Iodine deficiency. Endocr Rev 2009; 30: 376-408.
Laurberg P, Cerqueira C, Ovesen L, et al. Review. Iodine intake as a determinant of thyroid disorders in populations. Best Pract Res Clin Endocrinol Metab 2010; 24: 13-27.
Zhang J, Lazar MA. The mechanism of action of thyroid hormones. Annu Rev Physiol 2000; 62: 439-66.
Yen PM, Ando S, Feng X, et al. Thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 2006; 246: 121-7.
Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest 2006; 116: 2571-9.
Gereben B, Zeöld A, Dentice M, et al. Activation and inactivation of thyroid hormone by deiodinases: Local action with general consequences. Cell Mol Life Sci 2008; 65: 570-90.
Schweizer U, Weitzel JM, Schomburg L. Think globally: Act locally. New insights into the local regulation of thyroid hormone availability challenge long accepted dogmas. Mol Cell Endocrinol 2008; 289: 1-9.
Valverde-RC, Navarro L, Hiriart M. La Tiroides. En: Fisiología Médica. Drucker CR (ed.). 2a ed. México: El Manual Moderno [en prensa 2010].
Galton VA. The roles of the iodothyronine deiodinases in mammalian development. Thyroid 2005; 15: 823-34.
Visser WE, Friesema EC, Jansen J, et al. Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 2007; 19: 50-6.
Visser WE, Jansen J, Friesema EC, et al. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat 2009; 30: 29-38.
Dayan CM, Panicker V. Novel insights into thyroid hormones from the study of common genetic variation. Nat Rev Endocrinol 2009; 5: 211-8.
Heuer H, Visser TJ. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology 2009; 150: 1078-83.
Van der Deure WM, Peeters RP, Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol 2010; 44: 1-11.
Abe T, Suzuki T, Unno M, et al. Thyroid hormone transporters: recent advances. Trends Endocrinol Metab 2002; 13: 215- 220.
Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Dispos 2007; 35: 779-86.
Van der Deure WM, Peeters RP, Visser TJ. Genetic variation in thyroid hormone transporters. Best Pract Res Clin Endocrinol Metab 2007; 21: 339-50.
Friesema EC, Visser WE, Visser TJ. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol 2010; 322: 107-13.
Richardson SJ. Evolutionary changes to transthyretin: evolution of transthyretin biosynthesis. FEBS J 2009; 276: 5342-56.
Lechan RM, Fekete C. Infundibular tanycytes as modulators of neuroendocrine function: hypothetical role in the regulation of the thyroid and gonadal axis. Act Biomed 2007; 78: 84-98.
Hazlerigg D, Loudon A. New insights into ancient seasonal life timers. Current Biol 2008; 18: R795-R804.
Dumitrescu AM, Liao X-L, Best TB, et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet 2004; 74: 168-75.
Friesema EC, Grueters A, Biebermann H, et al. Association between mutations in a thyroid hormone transporter and severe Xlinked psychomotor retardation. Lancet 2004; 364: 1435-7.
Van der Deure WM, Hansen PS, Peeters RP, et al. Thyroid hormone transport and metabolism by organic anion transporter 1C1 and consequences of genetic variation. Endocrinology 2008; 149: 5307-14.
Van der Deure WM, Appelhof BC, Peeters RP, et al. Polymorphisms in the brain-specific thyroid hormone transporter OATP1C1 are associated with fatigue and depression in hypothyroid patients. Clin Endocrinol 2008; 69: 804-11.
Wiersinga WM. Do we need still more trials on T4 and T3 combination therapy in hypothyroidism? Europ J Endocrinol 2009; 161: 955-9.
Kim BW, Bianco ACC. For some, l-thyroxine replacement might not be enough: a genetic rationale. J Clin Endocrinol Metab 2009; 94: 1521-3.
Panicker V, Saravanan P, Vaidya B, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab 2009; 94: 1623-9.
Panicker V, Wilson SG, Spector TD, et al. Heritability of serum TSH, free T4 and free T3 concentrations: a study of a large UK twin cohort. Clin Endocrinol 2008; 68: 652-9.
Peeters RP, Van Toor H, Klootwijk W, et al. Polymorphisms in thyroid hormone pathway genes are associated with plasma TSH and iodothyronine levels in healthy subjects. J Clin Endocrinol Metab 2003; 88: 2880-8.
Lago-Lestón R, Iglesias MJ, San-José E, et al. Prevalence and functional analysis of the S107P polymorphism (rs6647476) of the monocarboxylate transporter 8 (SLC16A2) gene in the male population of north-west Spain (Galicia). Clin Endocrinol 2009; 70: 636-43.
Jansen J, Friesema EC, Kester MH, et al. Genotype-phenotype relationship in patients with mutations in thyroid hormone transporter MCT8. Endocrinology 2008; 149: 2184-90.
Vaurs-Barrière C, Deville M, Sarret C, et al. Pelizaeus-Merzbacher- Like disease presentation of MCT8 mutated male subjects. Ann Neurol 2009; 65: 114-8.
Visser WE, Friesema EC, Visser TJ. Minireview: Thyroid hormone transporters: The knowns and the unknowns. Mol Endocrinol 2010; Doi:10.1210/me.2010-0095
Wirth EK, Roth S, Blechschmidt C, et al. Neuronal 3´,3,5-triiodothyronine (T3) uptake and behavioral phenotype of mice deficient in Mct8, the neuronal T3 transporter mutated in Allan–Herndon–Dudley syndrome. J Neurosci 2009; 29: 9439-49.
Suzuki T, Abe T. Thyroid hormone transporters in the brain. The Cerebellum 2008; 7: 75-83.
Roberts LM, Woodford K, Zhou M, et al. Expression of the thyroid hormone transporters monocarboxylate transporter-8 (SLC16A2) and organic ion transporter-14 (SLCO1C1) at the blood-brain barrier. Endocrinology 2008; 149: 6251-61.
Di Cosmo C, Liao XH, Dumitrescu AM, et al. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology 2009; 150: 4450-8.
Braverman LE, Ingbar SH, Sterling K. Conversion of thyroxine (T4) to triiodothyronine (T3) in athyreotic subjects. J Clin Invest 1970; 49: 855-64.
Nobel S, Abrahmsen L, Oppermann U. Metabolic conversion as a pre-receptor control mechanism for lipophilic hormones. Eur J Biochem 2001; 268: 4113-25.
Köhrle J. Thyroid hormone transporters in health and disease: advances in thyroid hormone deiodination. Best Pract Res Clin Endocrinol Metab 2007; 21: 173-91.
Toyoda N, Berry MJ, Harney JW, Larsen PR. Topological analysis of the integral membrane protein, type 1 iodothyronine deiodinase (D1). J Biol Chem 1995; 270: 12310-8.
Baqui MM, Gereben B, Harney JW, et al. Distinct subcellular localization of transiently expressed types 1 and 2 iodothyronine deiodinases as determined by immunofluorescence confocal microscopy. Endocrinology 2000; 141: 4309-12.
Vivek-Sagar GD, Gereben B, Callebaut I, et al. The thyroid hormone-inactivating deiodinase functions as a homodimer. Mol Endocrinol 2008; 22: 1382-93.
Gereben B, Zavacki AM, Ribich S, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev 2008; 29: 898-938.
Weatherman RV. A triple play for thyroid hormone. ACS Chem Bol 2007; 2: 327-79.
Piehl S, Heberer T, Balizs G, et al. Thyronamines are isozymespecific substrates of deiodinases. Endocrinology 2008; 149: 3037-45.
Scanlan TS. Minireview: 3-iodothyronamine (T1AM): A new player on the thyroid endocrine team? Endocrinology 2009; 150: 1108-11.
Lanculescu AG, Giacomini KM, Scanlan TS. Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology 2009; 150: 1991-9.
Toyoda N, Harney JW, Berry MJ, Larsen PR. Identification of critical amino acids for 3,5,3’-triiiodothyronine deiodination by human type I deiodinase based on comparative functionalstructural analyses of the human dog and rat enzymes. J Biol Chem 1994; 32: 20329-34.
Galton VA, Schneider MJ, Clark AS, et al. Life without T4 to T3 conversion: Studies in mice devoid of the 5'-deiodinases. Endocrinology 2009; 150: 2957-63.
Gereben B, Salvatore D, Harney JW, et al. The human, but not rat, dio2 gene is stimulated by thyroid transcription factor-1 (TTF-1). Mol Endocrinol 2001; 15: 112-24.
Callebaut I, Curcio-Morelli C, Mornon JP, et al. The iodothyronine selenodeiodinases are thioredoxin-fold family proteins containing a glycoside hydrolase clan GH-A-like structure. J Biol Chem 2003; 278: 36887-96.
Salvatore D, Tibor B, Harney JW, Larsen PR. Molecular biological and biochemical characterization of the human type 2 selenodeiodinase. Endocrinol 1996; 137: 3308-15.
Paul MJ, Zucker I, Schwartz WJ. Tracking the seasons: the internal calendars of vertebrales. Phil Trans R Soc B 2008; 363: 341-61.
Miyauchi A, Takamura Y, Ito Y, et al. 3,5,3-Triiodothyronine thyrotoxicosis due to increased conversion of administered levothyroxine in patients with massive metastatic follicular thyroid carcinoma. J Clin Endocrinol Metab 2008; 93: 2239- 42.
Hernandez A. Structure and function of the type 3 deiodinase gene. Thyroid 2005; 15: 865-74.
Da Rocha ST, Edwards CA, Ito M, et al. Genomic imprinting at the mammalian Dlk1-Dio3 domain. Trends Genet 2008; 24: 306-16.
Dentice M, Ambrosio R, Salvatore D. Role of type 3 deiodinase in cancer. Expert Opin Ther Targets 2009; 13: 1363-73.
Mebis L, Van den Berghe G. The hypothalamus-pituitarythyroid axis in critical illness. Netherdlands J Med 2009; 67: 332-40.
Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract Endocrinol Metab 2008; 4: 148-55.
Warner MH, Beckett GJ. Review. Mechanisms behind the nonthyroidal illness syndrome: an update. J Endocrinol 2010; 205: 1-13.
Simonides WS, Mulcahey MA, Redout EM, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest 2008; 118: 975-83.
Driscoll DM, Copeland PR. Mechanism and regulation of selenoprotein synthesis. Annu Rev Nutr 2003; 23: 17-40.
Lu J, Holmgren A. Selenoproteins. J Biol Chem 2009; 284: 723-7.
Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 2005; 37: 1247-52.
Schomburg L, Dumitrescu AM, Liao XH, et al. Selenium supplementation fails to correct the selenoprotein synthesis de fect in subjects with SBP2 gene mutations. Thyroid 2009; 19: 277-81.
Ferreira-Azevedo M, Barra GB, Naves LA, et al. Selenoprotein- related disease in a young girl caused by nonsense mutations in the SBP2 gene. J Clin Endocrinol Metab 2010; Doi:10.1210/jc.2009-2611.
Peeters RP, Van der Deure WM, Visser TJ. Invited Review. Genetic variation in thyroid hormone pathway genes; polymorphisms in the TSH receptor and the iodothyronine deiodinases. Europ J Endocrinol 2006; 155: 655-62.
Mariotti S. Thyroid function and aging: do serum 3,5,3'-triiodothyronine and thyroid-stimulating hormone concentrations give the Janus response? J Clin Endocrinol Metab 2005; 90: 6735-7.
Chahal HS, Drake WM. The endocrine system and ageing. J Pathol 2007; 211: 173-80.
Peeters RP, Van den Beld AW, Van Toor H, et al. A polymorphism in type I deiodinase (D1) is associated with circulating free IGF-I levels and body composition in humans. J Clin Endocrinol Metab 2005; 90: 256-63.
Cooper-Kazaz R, Van der Deure WM, Medici M, et al. Preliminary evidence that a functional polymorphism in type 1 deiodinase is associated with enhanced potentiation of the antidepressant effect of sertraline by triiodothyronine. J Affect Disord 2009; 116: 113-6.
Grarup N, Andersen MK, Andreasen CH, et al. Studies of the common DIO2 Thr92Ala polymorphism and metabolic phenotypes in 7342 Danish white subjects. J Clin Endocrinol Metab 2007; 92: 363-6.
Heemstra KA, Hoftijzer HC, Van der Deure WM, et al. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin Endocrinol 2009; 71: 279-83.
Meulenbelt I, Min JL, Bos S, et al. Identification of DIO2 as a new susceptibility locus for symptomatic osteoarthritis. Hum Mol Genet 2008; 17: 1867-75.
Heemstra KA, Hoftijzer H, Van der Deure WM, et al. The type 2 deiodinase Thr92Ala polymorphism is associated with increased bone turn-over and decreased femoral neck bone mineral density. J Bone Miner Res 2010; 25: 1385-91.
Dentice M, Bandyopadhyay A, Gereben B, et al. The Hedgehog- inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Bio 2005; 7: 698-705.
Canani LH, Capp C, Dora JM, et al. The type 2 deiodinase A/G (Thr92Ala) polymorphism is associated with decreased enzyme velocity and increased insulin resistance in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2005; 90: 3472-8.
Hernandez A, Fiering S, Martinez E, et al. The gene locus encoding iodothyronine deiodinase type 3 (Dio3) is imprinted in the fetus and expresses antisense transcripts. Endocrinology 2002; 143: 4483-6.
Tata JR. Inhibition of the biological action of thyroid hormones by actinomycin D and puromycin. Nature 1963; 197: 1167-8.
Schadlow AR, Surks MI, Schwartz HL, Oppenheimer JH. Specific triiodothyronine binding sites in the anterior pituitary of the rat. Science 1972; 176: 1252-4.
Tata JR. Signaling through nuclear receptors. Nature Rev Mol Cell Biol 2002; 3: 702-10.
Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 2007; 21: 193-208.
Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr rev 2010; 31: 139-70.
Lee H, Yen PM. Recent advances in understanding thyroid hormone receptor coregulators. J Biomed Sci 1999; 6: 71-8.
Yen PM. Molecular basis of resistance to thyroid hormone. Trends Endocrinol Metab 2003; 14: 327-33.
Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 2007; 21: 277-305.
Weiss RE, Refetoff S. Resistance to thyroid hormone. Rev Endocr Metab Disord 2000; 1: 97-108.
Webb P. Another story of mice and men: The types of RTH. PNAS 2009; 106: 9129-30.
Sadow P, Reutrakul S, Weiss RE. Resistance to thyroid hormone in the absence of mutations in the thyroid hormone receptor genes. Curr Opinion Endocrinol Diab 2000; 7: 253-9.
LaFranchi SH, Snyder DB, Sesser DE, et al. Follow-up of newborns with elevated screening T4 concentrations. J Ped 2003; 143: 296-301.
Machado D, Sabet A, Santiago LA, et al. A thyroid hormone receptor mutation that dissociates thyroid hormone regulation of gene expression in vivo. PNAS 2009; 106: 9441-6.
Köhrle J, Gärtner R. Selenium and thyroid. Best Pract Res Clin Endocrinol Metab 2009; 23: 815-27.
Valverde RC. De yodo y hormonas. Una Historia de supernovas, átomos y genes. México: Dirección General de Publicaciones, UNAM [en prensa, 2011].
Celis A, Nava J. La patología de la pobreza. Rev Hospital General 1970; 33: 371-82.
Lessard R, Raynault MF. Public health and poverty. Can J Public Health 2009; 100: 245-58.
Boltivinik J, Damian A. La Pobreza ignorada. Evolución y características 2001. Disponible en: http://redalyc.uaemex.mx