2012, Number s1
<< Back Next >>
Rev Cub Oftal 2012; 25 (s1)
Structural characteristics of the optic disc and the neuroretinal nerve fiber layer observed by confocal laser tomography in suspected primary angle closure
Fernández AL, Fumero GF, Padilla GCM, Piloto DI, Carcaset CAI
Language: Spanish
References: 40
Page:
PDF size: 391.66 Kb.
ABSTRACT
Objective: to evaluate the characteristics of the optic disc and of the retinal nerve fiber layer in the suspected primary angle closure, the performance of glaucomatous discriminant functions, and the influence of the optic disc size in the results.
Methods: a cross-sectional case series study in 47 eyes (30 patients) with suspected primary angle-closure, for which the confocal laser tomography (HRT 3, Heidelberg Engineering, Germany), was used to obtain the images. The influence of the optic disc size was analized in 3 groups: < 1,6mm
2, 1,6 - 2,0 mm
2 y > 2,0 mm
2.
Results: the disc area was positively related to the cup area, the rim area, the cup volume, the retinal nerve fiber layer cross sectional area, and the cup size (p=0,023, p=0,009, p=0,022, p=0,026, p=0,020 respectively) and negatively related with the horizontal curvature of the retinal nerve fiber layer (p=0,019). There was a significant relation to the variation of contour height (p=0,008), particularly to differences between small and medium size discs. Discriminant functions such as MRA, GPS and FSM performed better in small discs (approximately 92 % of agreement with the normal discs for each one). The RB function obtained the greater coincidence (100, 96 and 100 % for respective groups of disc areas), whereas GPS obtained the smallest (92, 72 and 55,6 % respectively).
Conclusions: the disc area is related to cup area, rim area, cup volume, retinal nerve fiber layer cross sectional area, retinal nerve fiber layer horizontal curvature, cup size and the variation of contour height. The MRA, GPS and FSM discriminant functions identify better the normal optic disc when it is small. The RB function performs the best whereas the GPS performs the worst, regardless of the disc area.
REFERENCES
Quigley HA. Glaucoma de ángulo cerrado, respuestas simples a mecanismos complejos. Explicación de los mecanismos del glaucoma de ángulo cerrado sobre la base de conceptos fundamentados en evidencias. Am J Ophthalmol. 2009;148(5):657-69.
Fernández L, Padilla CM, Sánchez E, Piloto I, Cobas MJ, et al. Evaluación del cierre angular primario mediante biomicroscopia ultrasónica. Rev Cubana Oftalmol. 2009;22(Sup 1):41-6.
Sedeño I, García F, Stusser R, Padrón V. Valor de la ecobiometría en el glaucoma primario de ángulo estrecho. Rev Cubana Oftalmol. 1999;12(1):5-14.
Jonas JB. What are the ophthalmoscopic signs of glaucomatous optic neuropathy? En: Susanna R Jr, Weinreb RN. Answers in glaucoma. Brasil: Cultura Médica; 2005. p. 39-49.
Chi T, Ritch R, Stickler D. Racial differences in optic nerve head parameters. Arch Ophthalmol. 1989;107(6):836-9.
Mansour AM. Racial variation of optic disc size. Ophthalmic Res. 1991;23(2):67-72.
Girkin CA, Sample PA, Liebmann JM, Jain S, Bowd C, ADAGES Group. African Descent and Glaucoma Evaluation Study (ADAGES): II. Ancestry differences in optic disc, retinal nerve fiber layer, and macular structure in healthy subjects. Arch Ophthalmol. 2010;128(5):541-50.
Zangwill LM, Weinreb RN, Berry CC, Smith AR, Dirkes KA, Coleman AL, et al. For the Confocal Scanning Laser Ophthalmoscopy Ancillary Study to the Ocular Hypertension Treatment Study. Racial differences in optic disc topography. Arch Ophthalmol. 2004;122(1):22-28.
Jonas JB. Optic disk size correlated with refractive error. Am J Ophthalmol. 2005;139(2):346-8.
Miglior S, Brigatti L, Velati P, Balestreri C, Rossetti L, Bujtar E, et al. Relationship between morphometric optic disc parameters, sex and axial length. Curr Eye Res. 1994;13(2):119-24.
Hertz BT, Parrish RK. ¿Qué tecnología dominará el análisis estructural del glaucoma? Ophthalmology Times América Latina. 2007:13-4.
Shimazawa M, Tomita G, Taniguchi T, Sasaoka M, Hara H, Kitazawa Y, et al. Morphometric evaluation of changes with time in optic disc structure and thickness of retinal nerve fibre layer in chronic ocular hypertensive monkeys. Experimental Eye Research. 2006;82(3):427-40.
Kee Ch, Kooa H, Jia Y, Kimb S. Effect of optic disc size or age on evaluation of optic disc variables. Br J Ophthalmol. 1997;81(12):1046-9.
Zangwill LM, Jain S, Racette L. The effect of disc size and severity of disease on the diagnostic accuracy of the Heidelberg retina tomograph Glaucoma Probability Score. Invest Ophthalmol Vis Sci. 2007;48(6):2653-60.
Iester M, Mikelberg FS, Drance SM. The effect of optic disc size on diagnostic precision with the Heidelberg retina tomograph. Ophthalmology. 1997;104(3):545-8.
Quigley MG, Patel V, Wittich W, Harasymowycz P. Comparing optic nerve-head-size measurements by the Heidelberg Retina Tomograph with fundus photography performed with a novel focusing technique. J Glaucoma. 2008;17(6):480-3.
Ferreras A, Pajarín AB, Polo V, Larrosa JM, Pablo LE, Honrubia FM. Diagnostic ability of Heidelberg Retina Tomograph 3 classifications: Glaucoma Probability Score versus Moorfields Regression Analysis. Ophthalmology. 2007;114(11):1981-7.
Iester M, Perdicchi A, Capris E, Siniscalco A, Calabria G, Santi M. Comparison between Discriminant Analysis Models and Glaucoma Probability Score for the detection of glaucomatous optic nerve head changes. J Glaucoma. 2008;7(7):535-40.
Oddone F, Centofanti M, Rossetti L, Iester M, Fogagnolo P, Capris E, et al. Exploring the Heidelberg Retinal Tomograph 3 Diagnostic Accuracy across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2008;115(8):1358-65.
Swindale NV, Stjepanovic G, Chin A. Automated analysis of normal and glaucomatous optic nerve head topography images. Invest Ophthalmol Vis Sci. 2000;41(7):1730-42.
Sung KR, Townsend KA, Wollstein G, Ishikawa H, Schuman JS, Fechtner RD. Interpreting Progression Analysis Software. Glaucoma Today. 2007 [citado 20 enero de 2012]. Disponible en: http://bmctoday.net/glaucomatoday/2007/11/article.asp?f=GT1107_07.php
Wollstein G, Garway-Heath DF, Hitchings RA. Identification of early glaucoma cases with the scanning laser ophthalmoscope. Ophthalmology. 1998;105(8):1557-63.
Antón A. Interpretation of the Heidelberg Retina Tomograph II (HRT II). En: Fingeret M, Flanagan JG, Liebman J. The Essential HRT Primer. USA: Heidelberg Engineering; 2005. p. 45-6.
Strouthidis NG, Garway-Heath DF. New developments in Heidelberg retina tomograph for glaucoma. Current Opinion in Ophthalmology. 2008;19(2):141-8.
Mikelberg FS, Parfitt CM, Swindale NV. Ability of the Heidelberg Retina Tomograph to detect early glaucomatous visual field loss. J Glaucoma. 1995;4(4):242-7.
Bathija R, Zangwill L, Berry CC, Sample P, Weinreb R. Detection of early glaucomatous structural damage with confocal scanning laser tomography. J Glaucoma. 1998;7(2):121-7.
López-Peña MJ, Ferreras A, Larrosa JM, Polo V, Fogagnolo P, Honrubia FM. Relación entre la perimetría automatizada convencional y la topografía papilar realizada con el Tomógrafo Heidelberg. Arch Soc Esp Oftalmol. 2009;84(12):611-24.
Martínez De La Casa JM, García J, Castillo A, García J. Correlaciones entre el analizador de grosor retiniano y el láser confocal de barrido en el estudio de la papila. Arch Soc Esp Oftalmol. 2004;79(1):21-6.
Hermann MM, Theofylaktopoulos I, Bangard N, Jonescu-Cuypers C, Coburger S, Diestelhorst M. Optic nerve head morphometry in healthy adults using confocal laser scanning tomography. Br J Ophthalmol. 2004;88(6):761-5.
Rekic A, Breznik M, Cvenkel B. Comparison of optic nerve head topography in healthy adults using a Heidelberg retina tomograph and retinal thickness analyzer. Int Ophthalmol. 2007;27(1):1-9.
Heidelberg Engineering [Internet]. Reinhard B. HRT: How to read printout [actualizado 2000; citado 20 febrero de 2012]. Disponible en: http://www.heidelbergengineering.com/wpcontent/uploads/hrtiitutqg_doc_howtoreadprintout_031705.pdf
Congdon NG, Youlin Q, Quigley H, Hung. Biometry and primary angle closure glaucoma among Chinese, white, and black populations. Ophthalmology. 1997;104(9):1489-95.
Yamazaki Y, Yoshikawa K, Kunimatsu S, Koseki N, Suzuki Y, Matsumoto S, et al. Influence of myopic disc shape on the diagnostic precision of the Heidelberg Retina Tomograph. Jpn J Ophthalmol. 1999;43(5):392-7.
Shin IH, Kang SY, Hong S, Kim SK, Seong GJ, Ma KT, et al. Comparison of OCT and HRT findings among normal, normal tension glaucoma, and high tension glaucoma. Korean J Ophthalmol. 2008;22(4):236-41.
Remo S Jr, Vessani RM. New findings in the evaluation of the optic disc in glaucoma diagnosis. Curr Opin Ophthalmol. 2007;18(2):122-8.
Oddone F, Centofanti M, Iester M, Rossetti L, Fogagnolo P, Michelessi M, et al. Sector-Based Analysis with the Heidelberg Retinal Tomograph 3 across disc sizes and glaucoma stages: a multicenter study. Ophthalmology. 2009;116(6):1106-11.
Coops A, Henson DB, Kwartz AJ, Artes PH. Automated analysis of Heidelberg retina tomograph optic disc images by glaucoma probability score. Invest Ophthalmol Vis Sci. 2006;47(12):5348-55.
Badalà F, Nouri-Mahdavi K, Raoof DA, Leeprechanon N, Law SK, Caprioli J. Optic disk and nerve fiber layer imaging to detect glaucoma. Am J Ophthalmol. 2007;144(5):724-32.
Arena E, Rodríguez M. Diseño de una nueva unidad cuantitativa en la interpretación de los estudios computarizados de nervio óptico. Revista Peruana de Oftalmología. 1998;22(1):25-31.
Breusegem C, Fieuws S, Stalmans I, Zeyen T. Variability of the Standard Reference Height and Its Influence on the Stereometric Parameters of the Heidelberg Retina Tomograph 3. Invest Ophthalmol Vis Sci. 2008;49(11):4881-5.