2009, Number 6
<< Back Next >>
Rev Invest Clin 2009; 61 (6)
Predictors factors for the production of bronchopulmonary dysplasia in the preterm newborn
Tapia-Rombo CA, Córdova-Muñiz NE, Ballesteros-Del-Olmo JC, Aguilar-Solano AMG, Sánchez-García L, Gutiérrez-González GA, Cuevas-Urióstegui ML
Language: Spanish
References: 41
Page: 466-475
PDF size: 87.76 Kb.
ABSTRACT
Introduction. The bronchopulmonary dysplasia (BPD) is a lung illness chronicle that is developed in preterm newborn (PTNB) mainly, secondary to multiple factors of risk which have not been studied completely.
Objective. To determine the predictors factors (of risk factors) for the production of BPD in the PTNB of 28 at 36 weeks of gestational age.
Material and methods. Eighty medical records from January 2004 to May 2006 of PTNB that there was received mechanical attendance to the ventilation (MAV) at least 24 hrs were reviewed retrospectively. They were divided in two groups: group A, PTNB that had BPD, composed of 40 patients (cases) and group B, PTNB with MAV but that had not developed BPD due to the procedure of 40 patients too (controls). It was used descriptive and inferential statistic. Odds ratio (OR) and multivariate analysis were used to study predictors factors. Statistical significance was considered with P ‹ 0.05.
Results. There was significant difference of the supply of the intravenous (IV) fluids the days 2, 3, 4 and 7 of extrauterine life (EUL), of the oxygen inspired fraction (FiO
2) of in the day 7 of being had initiate the MAV, of the peak inspiratory pressure (PIP) in the day 1 and 3 of being had initiate the MAV everything to favor of the cases, with P ‹ 0.05. In the multivariate analysis was significative in the intake of IV fluids ≥ 140 mL x kg of weight x day to the fourth day of EUL, the oxygen arterial pressure (PaO
2) › 70 mm Hg for › 4 days, reintubations number (two or more times) and the symptomatic patent ductus arteriosus (PDA), all with P ‹ 0.05.
Conclusions. We concluded that, in critically sick PTNB, they exist one series of well-known risk factors but more specified in this study that they should avoid as much as possible; the handling of the liquids IV should be cautious, not to spend of 139 mL x kg x day to the 4th day of EUL, not to be so permissive with the PaO
2 maintaining it in values ≤ 70 mm of Hg after four days, to avoid as much as possible the reintubations and to treat the but quick the symptomatic PDA still without that it is significant, to diminish this way, the risk of BPD.
REFERENCES
Northway WH Jr, Rosan RC, Porter DY. Pulmonary disease following respirator therapy of hyaline–membrane disease. N Engl J Med 1967; 276: 357-60.
Bancalari E, Abdenour GE, Feller R, Gannon J. Bronchopulmonary dysplasia: clinical presentation. J Pediatr 1979; 95: 819-23.
Shennan AT, Dunn MS, Ohlsson A, Lennox K, Hoskins EM. Abnormal pulmonary outcomes in premature infants: prediction from oxygen requirement in the neonatal period. Pediatrics 1988; 82: 527-32.
Jobe AH, Bancalari E. Bronchopulmonary dysplasia. Am J Respir Crit Care Med 2001; 163: 1723-29.
De Felice C, Latani G, Parrini S. Oral mucosal microvascular abnormalities: An early marker of bronchopulmonary dysplasia. Pediatr Res 2004; 56: 927-31.
Hoekstra RE, Jackson JC, Myers TF, Frantz III ID, Stern ME, Powers WF, et al. Improved neonatal survival following multiple doses of bovine surfactante in very premature neonates at risk for respiratory distress syndrome. Pediatrics 1991; 88: 10-18.
Long W, Thompson T, Sundell H, Schumacher R, Volberg F, Guthrie R. Effects of two rescue doses of a synthetic surfactant on mortality rate and survival without bronchopulmonary dysplasia in 700- to 1350-gram infants with respiratory distress syndrome. The American Exosurf Neonatal Study Group I. J Pediatr 1991; 118: 595-98.
Ackerman NB Jr, Coarlson JJ, Kuehl TJ, et al. Pulmonary interstitial emphysema in the premature baboon with hyaline membrane disease. Crit Care Med 1984; 12: 512-16.
Marshall DD, Kotelchuck M, Young TE, Bose CL, Kruyer L, Oshea TM. Risk factors for chronic lung disease in the surfactant era: A North Carolina population-based study of very low birth weight infants. Pediatrics 1999; 104: 1345-50.
Van Marter JL, Leviton A, Allred EN, Pagano M, Kuban KC. Hydration during the first days of life and the risk of bronchopulmonary dysplasia in low birth weight infants. J Pediatr l990; 116: 942-9.
Wang EEL, Ohlsson A, Kellner JD. Association of ureaplasma urealyticum colonization with chronic lung disease of prematurity: Results of metaanalysis. J Pediatr 1995; 127: 640-5.
Frank L, Groseclose E. Oxygen toxicity in newborns rats: the adverse effects of undernutrition. J Appl Phisiol 1982; 53: 1248-55.
Bertrand JM, Ryley SP, Popkin J, Coates AL. The long-term pulmonary sequelae of prematurity: the role of familial airway hyperreactivity and the respiratory distress syndrome. N Engl J Med 1985; 312: 742-5.
Palta M, Gabbert D, Weinstein MR, Meter ME. Multivariate assessment of traditional risk factor for chronic lung disease in very low birth weight neonates. J Pediatr 1990; 116: 942-9.
Dries DJ. Permissive hypercapnia. J Trauma 1995; 39: 984-9.
Corcoran JD, Patterson CC, Thomas PS, Halliday HL. Reduction in the risk of bronchopulmonary dysplasia from 1980- 1990: results of a multivariate logistic regression analysis. Eur J Pediatr 1993; 152: 677-8l.
Garland SJ, Buck KR, Allred EN, Leviton A. Hypocarbia before surfactant therapy appears to increase bronchopulmonary dysplasia risk in infants with respiratory distress syndrome. Arch Pediatr Adolesc Med 1995; 149: 6l7-22.
Van Marter JL, Allred EN, Pagano M, Sanocka U, Parad R, Moore M, et al. Do clinical markers of barotrauma and oxygen toxicity explain interhospital variation in rates of chronic lung disease? Pediatrics 2000; 105: 1194-20l.
Noguez PFJ. La insuficiencia respiratoria en la sala de cuidados intensivos. En: Arellano PM (ed.). Cuidados intensivos en pediatría. 2da Ed. México: Nueva Editorial Interamericana; 1981, p. 43-96.
Yeo CL, Choo S, Ho L. Chronic lung disease in very low birthweight infants: A 5 year review. J Pediatr Child Health 1997; 33: 102-6.
Rojas MA, González A, Bancalari E, Claure U, Poole C, Silva- Neto G. Changing trends in the epidemiology and pathogenesis of neonatal chronic lung disease. J Pediatr 1995; 126: 605-10.
Choi CW, Kim BI, Kim HS, Park JD, Choi JH, Son DW. Increase of interleukin-6 in tracheal aspirate at birth: a predictor of subsequent bronchopulmonary dysplasia in preterm infants. Acta Paediatr 2006; 95: 38-43.
Bhering CA, Mochdece CC, Moreira ME, Rocco JR, San’Ann GM. Bronchopulmonary dysplasia prediction model for 7-dayold infants. J Pediatr (Rio J) 2007; 83: 163-70.
De Felice C, Parrini S, Barducci A, Chitano G, Tonni G, Latini G. Abnormal oral mucosal light reflectance in bronchopulmonary dysplasia. Early Hum Dev 2006; 82: 273-8.
Sweet D, Bevilacqua G, Carnielli V, Greisen G, Plavka R, Saugstad DO, et al. European consensus guidelines on the management of neonatal respiratory distress syndrome. J Perinat Med 2007; 35: 175-86.
Capurro H, Konchezkys S, Fonseca D, Caldeyro-Barcia R. A simplified method for diagnosis of gestational age in the newborn infant. J Pediatr 1978; 93: 120-2.
Tapia-Rombo CA, Rosales-Cervantes MGI, Saucedo-Zavala VJ, Ballesteros-del-Olmo JC, Sánchez-García L, Santos-Vera I. Saturación periférica de oxígeno por oximetría de pulso en recién nacidos clínicamente sanos a la altitud de la ciudad de México (2,240 m). Gac Méd Méx 2008; 144: 207-12.
Yeh T, Raval D, Luken J, Thalji A, Lilien L, Pildes RS. Clinical evaluation of premature infants with patent ductus arteriosus: A scoring system with echocardiogram, acid-base, and blood gas correlations. Crit Care Med 1981; 9: 655-7.
Young MJ, Bresnitz EA, Strom BL. Sample size nomograms for interpreting negative clinical studies. Ann Intern Med 1983; 99: 248-51.
Davis JM, Metlay LA, Dickerson B, Penney DP, Nother RH. Early pulmonary changes associated with high-frequency jet ventilation in newborn piglets. Pediatr Res 1990; 27: 460-6.
Hansen T, Corbert A. Enfermedad pulmonar crónica. En: Taeusch HW, Ballard RA (eds.). Tratado de neonatología de Avery. 7a Ed. Philadelphia: Harcourt; 2000, p. 634-47.
Cole CH, Fiascone JM. Strategies for prevention of neonatal chronic lung disease. Semin Perinatol 2000; 24: 445-62.
Monin P, Vert P. Tratamiento de la displasia broncopulmonar. Clin Perinatol 1987; 3: 555-74.
de Lemos RA, Coalson JJ. Contribución de los modelos de experimentación a la comprensión de la patogenia y el tratamiento de la displasia broncopulmonar. Clin Perinatol 1992; 3: 513-31.
Goldsmith JP, Karotkin EH. Ventilación asistida neonatal. 4th Ed. Philadelphia: W.B. Saunders Company; 2005, p. 512-13.
Carlton DP, Cummings JF, Scheerer RG, Poulain FR, Bland RD. Lung overexpansion increase pulmonary microvascular protein permeability in young lambs. J Appl Physiol 1990; 69: 577-83.
Deryfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis 1988; 137: 1159-64.
Hernández LA, Peevy KJ, Moise AA, Parker JC. Chest wall restriction limits high airway pressure- induced lung injury in young rabbits. J Appl Physiol 1989; 66: 2364-8.
Hazinski T, Blalock W, Engelhardt B. Control of water balance in infants with bronchopulmonary dysplasia: role of endogenous vasopresin. Pediatr Res 1988; 23: 86-8.
Tapia-Rombo CA, Domínguez-Martínez R, Saucedo-Zavala VJ, Cuevas-Urióstegui ML. Factores de riesgo para la presencia de complicaciones de la asistencia mecánica ventilatoria en el recién nacido. Rev Invest Clin 2004; 56: 700-11.
Yoon BH, Romero R, Kim KS, Park JS, Ki SH, Kim BI, Jun JK. A systemic fetal inflammatory response and the development of bronchopulmonary dysplasia. Am J Obstet Gynecol 1999; 181: 773-79.