2013, Number 1
<< Back Next >>
Revista Cubana de Información en Ciencias de la Salud (ACIMED) 2013; 24 (1)
Causal knowledge representation techniques: a case study in Medical Informatics
Leyva-Vázquez M, Pérez-Teruel K, Febles-Estrada A, Gulín-González J
Language: Spanish
References: 48
Page: 73-83
PDF size: 163.96 Kb.
ABSTRACT
It is a common endeavor in medicine to identify and represent causal relationships between variables of interest. A computational representation of causal knowledge should be based on directed graphs. There are two main techniques: bayesian networks and fuzzy cognitive maps. The present paper compares the two techniques and shows the advantages of fuzzy cognitive maps. It is suggested that fuzzy cognitive maps be used in medicine. A procedure to obtain causal models is described. A case study is presented showing the applicability of the proposal, as well as the advantages of cognitive maps to represent causal knowledge in a given situation. Future research is proposed to expand the use of fuzzy cognitive maps.
REFERENCES
Sharif AM, Irani Z. Applying a fuzzy-morphological approach to complexity within management decision making. Emerald Group Publishing Limited; 2006. p. 930-61.
Glykas M. Fuzzy Cognitive Maps: Advances in theory, methodologies, tools and applications: Springer Verlag; 2010.
Puente Agueda C. Causality in Sciencie. Pensamiento Matemático. 2011(1):12.
Schultz MT, Mitchell KN, Harper BK, Bridges TS. Decision Making Under Uncertainty: U.S. Army Corps of Engineers. 2010.
Srivastava R, Buche M, Roberts T. Belief function approach to evidential reasoning in causal maps. In: Narayanan VK, Armstrong DJ, editors. Causal mapping for research in information technology: Idea Group Pub. 2005.
Pearl J. Bayesian and belief-functions formalisms for evidential reasoning: a conceptual analysis. Readings in uncertain reasoning: Morgan Kaufmann Publishers Inc.; 1990. p. 540-74.
Mazlack LJ, editor. General causal representations in the medical domain. Biomedical engineering and informatics, 2009 BMEI '09 2nd International Conference on; 2009 17-19 Oct. 2009.
Iamratanakul S, Shankar R, Dimmitt NJ, editors. Improving Project Portfolio Management with Strategic Alignment. PICMET 2009; 2009; Portland, Oregon USA.
García-Retamero R, Hoffrage U. How causal knowledge simplifies decision-making. Minds Mach. 2006;16(3):365-80.
Sobrino A. Imperfect causality: Combining experimentation and theory. In: Trillas E, Bonissone PP, Magdalena L, Kacprzyk J, editors.: Springer Berlin/Heidelberg; 2012. p. 371-89.
Hagmayer Y, Sloman SA, editors. Causal models of decision making: choice as intervention. 2005.
Puente Águeda C, Olivas Varela JA, Sobrino Cerdeiriña A. Estudio de las relaciones causales. Anales de mecánica y electricidad,. 2010;87:54-9.
Williamson J. Bayesian nets and causality: philosophical and computational foundations: Oxford University Press; 2005.
Cai Y, Miao C, Tan AH, Shen Z, Li B. Creating an Immersive Game World with Evolutionary Fuzzy Cognitive Maps. IEEE Computer Society; 2010. p. 58-70.
Pearl J. Causality: models, reasoning and inference: Cambridge University Press; 2000.
Puga JL. Cómo construir y validar Redes bayesianas con netica. Rev Electr Metodol Aplic. 2012;17(1):1-17.
Zhi-Qiang LIU. Causation, bayesian networks and cognitive maps. Acta automática sinica. 2001;27(4):552-66.
Zadeh LA. Fuzzy sets. Information and control. 1965;8(3):338-53.
Klir GJ, Yuan B. Fuzzy sets and fuzzy logic: Prentice Hall New Jersey; 1995.
Sokar IY, Jamaluddin MY, Abdullah M, Khalifa ZA. KPIs Target adjustment based on trade-off evaluation using fuzzy cognitive maps. Austr Jour Bas Appl Scienc. 2011;5(12):2048-53.
Salmeron JL. Supporting decision makers with fuzzy cognitive maps. Industrial Research Institute, Inc; 2009. p. 53-9.
Kosko B. Fuzzy cognitive maps. International Journal of Man-Machine Studies; 1986;24(1):65-75.
Ping CW. A methodology for constructing causal knowledge model from fuzzy cognitive map to bayesian belief network: Chonnam National University; 2009.
Kosko B. Fuzzy engineering. Prentice-Hall, Inc.; 1997.
Singh A. Architecture value mapping: using fuzzy cognitive maps as a reasoning mechanism for multi-criteria conceptual design evaluation. Missouri: Missouri University of Science and Technology; 2011.
Salmeron JL. Modelling grey uncertainty with fuzzy grey cognitive maps. Expert Systems with Applications. 2010;37(12):7581-8.
Papageorgiou E, Stylios C, Groumpos P. Introducing interval analysis in fuzzy cognitive map framework advances in artificial intelligence. In: Antoniou G, Potamias G, Spyropoulos C, Plexousakis D, editor. Springer Berlin/Heidelberg; 2006. p. 571-5.
John R, Coupland S. Type-2 Fuzzy Logic: A Historical View. Computational Intelligence Magazine, IEEE. 2007;2(1):57-62.
Iakovidis DK, Papageorgiou E. Intuitionistic fuzzy cognitive maps for medical decision making. Information Technology in Biomedicine, IEEE Transactions on. 2011;15(1):100-7.
Kandasamy WBV, Smarandache F. Fuzzy cognitive maps and neutrosophic cognitive maps: Xiquan; 2003.
Chunying Z, Lu L, Dong O, Ruitao L, editors. Research of rough cognitive map model. Advanced research on electronic commerce, web application and communication. Communications in Computer and Information Science; 2011: Springer.
Kang B, Deng Y, Sadiq R, Mahadevan S. Evidential cognitive maps. Knowledge-Based Systems; 2012.
Mazlack LJ. Representing causality using fuzzy cognitive maps. 2009:1-6.
Lin CT, Lee CSG. Neural-network-based fuzzy logic control and decision system. IEEE; 2002. p. 1320-36.
Sadiq R, Kleiner Y, Rajani B, editors. Interpreting fuzzy cognitive maps (FCMs) using fuzzy measures to evaluate water quality failures in distribution networks. Joint International Conference on Computation in Civil and Building Engineering (ICCCBE XI); Montreal, QC; 2006.
Xirogiannis G, Glykas M, Staikouras C. Fuzzy cognitive maps in banking business process performance measurement. In: Glykas M, editor. Fuzzy cognitive maps: Springer Berlin/Heidelberg; 2010. p. 161-200.
Pajares G, Guijarro M, Herrera P, Ruz J, de la Cruz J. Fuzzy cognitive maps applied to computer vision tasks. Springer; 2010. p. 259-89.
Stylios C, Georgopoulos V. Fuzzy cognitive maps structure for medical decision support systems. Springer; 2008. p. 151-74.
Georgopoulos V, Stylios C. Augmented fuzzy cognitive maps supplemented with case based reasoning for advanced medical decision support. 2005:391-405.
Nguyen DD, Michael T, Anthony M, inventor Raytheon Company. System and method for sensor scheduling using fuzzy cognitive maps. United States; 2012.
Yu R, Tzeng GH. A soft computing method for multi-criteria decision making with dependence and feedback. Elsevier; 2006. p. 63-75.
Stach W, Kurgan L, editors. Modeling software development project using fuzzy cognitive maps. ASERC Workshop Quantitative Soft Software Eng; 2004.
Stach W, Kurgan L. Parallel fuzzy cognitive maps as a tool for modeling software development projects. IEEE; 2004. p. 28-33.
Mazlack LJ, editor. Need for causal modeling approximations. Cybernetics and intelligent systems (CIS). 5th International Conference. 17-19 September, 2011.
Salmeron JL. Augmented fuzzy cognitive maps for modelling LMS critical success factors. Knowledge-based systems. 2009;22(4):275-8.
Leyva-Vázquez MY, Rosado-Roselló R, Febles-Estrada A. Modelado y análisis de los factores críticos de éxito de los proyectos de software mediante mapas cognitivos difusos. Ciencias de la Información. 2012;43(2):41-6.
Urra González P, Rodríguez Perojo K, Concepción Báez CM, Cañedo Andalia R. Intranet del Centro Nacional de Información de Ciencias Médicas-Infomed: un espacio de trabajo en red para el Sistema de Información en Salud de Cuba. Rev Cubana Inform Sal Acimed [Internet]. 2006;14(1); [citado 3 de enero de 2013]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1024-94352006000100013&lng=es&nrm=iso
Embi PJ, Payne PRO. Clinical research informatics: challenges, opportunities and definition for an emerging domain. Jour Amer Med Informat Assoc. 2009;16(3):316-27.