2000, Number 2
<< Back
Arch Cardiol Mex 2000; 70 (2)
Release of nitric oxide induced by blood flow. Update and perspectives
Suárez MPJ
Language: Spanish
References: 55
Page: 197-202
PDF size: 153.04 Kb.
ABSTRACT
No abstract
REFERENCES
Thoma R: Uber die intima der arterien. Virchovs Arch A 1921; 230: 1-45.
Schretzenmayr A: Uber kreislaufregulatorische vorgange an den grossen arterien bei der muskelarbeit. Pflugers Arch 1933; 232: 743-748.
Rodbard S: Negative feedback mechanisms in the architecture and function of the conective and cardiovascular tissues. Perspect Biol Med 1970; 13: 507.
Rodbard S: Vascular caliber. Cardiology 1975; 60: 4-49.
Furchgott RF, Zawadski JV: The obligatory role of the endothelial celis in the relaxation of arterial smooth muscle celis by acetylcholine. Nature Lond 1981; 288: 373-376.
Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E: Flow-dependent, endothelium-mediated dilatation of epicardial arteries in concious dogs: effects of Cyclo-oxygenase inhibition. J Cardiovasc Pharmacol 1984; 6: 1161-1169.
Kamiya A, Togawa T: Adaptative regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 1980; 239: H14-H21.
Melkumyants AM, Balashov SA: Blood flow velocity: a constantly acting factor in dilatation of large arteries. Bull Exp Biol Med 1985; 99: 135-138.
Melkumyants AM, Balashov SA, Khayutin VM: Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc Res 1989; 23: 23741-747.
Miller VM, Vanhoutte PM: Enhanced release of endothelium-derived relaxing factor by chronic increases in blood flow. Am J Physiol 1988; 255: H446-H451.
Pohl U, Holts J, Busse R, Bassenge E: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension Dallas 1986; 8: 37-47.
Rubanyi GM, Ramiro JC, Vanhoutte PM: Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145-H1149.
Rubanyi GM, Freay AD, Kauser K, Johns A, Harder DR: Mechanoreception by the endothelium: mediators and mechanisms of pressure-and flow induced vascular responses. Blood Vessels 1990; 27: 246-257.
Smiesko V, Kozik J, Dolezel S: Role of the endothelium in the control of the arterial diameter by blood flow. Blood Vessels 1985; 22: 247-251.
Johnson PC: The myogenic response. In: Handbook of Physiology. The cardiovascular System. Vascular Smooth Muscle. Bethesda, MD: Am. Physiol. Soc., sect 2, vol. II, chapt. 15, 1981; 409-442.
Rubanyi GM: Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am J Physiol 1988; 255: H783-H788.
Koller A, Sunand D, Kaley G: Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res 1993; 72: 1276-1284.
Moncada S, Palmer RM, Highs EA: Nitric oxide: Physiology, pathophysiology and pharmacology of nitric oxide. Pharmacol Rev 1991; 43: 109-142.
Palmer RM, Ashton DS, Moncada S: Vascular Endothelial cells synthesize nitric oxide from L-arginine. Nature Lond 1988; 333: 664-666.
Palmer RM, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activyty of endothelium-derived relaxin factor. Nature Lond 1987; 327: 524-526.
Ignarro LJ: Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30: 535-560.
Rogers NE, Ignarro LJ: Constitutive nitric oxide synthase from cerebelum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 1992; 189: 242-249.
Rubanyi GM, Vanhoutte PM: Superoxide anions and hyperoxia inactivate endothelium derived relaxing factor. Am J Physiol 1986; 250: H822-H827.
Arnold WP, Mittal CK, Katsuki S, Murad F: Nitric oxide activates guanilate cyclase and increases guanosine 3',5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74: 3203-3207.
Murad F: Cyclic guanosines monophosphate as a mediator of vasodilation. J Clin lnvest 1986; 78: 1-5.
Stamiler J, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies PF, et al: N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 1989; 65: 789-795.
Macmillan-Crow LA, Murphy-Ullrich JE, Lincoln TM: Identification and possible localization of cGMP-dependent protein kinase in bovine aortic endothelial cells. Biochem Biphys Res Commun 1994; 201: 531-537.
Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, et al: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase. J Biol Chem 1993; 268: 17478-17488.
Forsterman U, Pollock JS, Schmidt HH, Heller M, Murad F: Calmodulin-dependent endothelium-derived relaxing factor synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991; 88: 1788-1792.
López-Jaramillo P, González MP, Palmer RM, Moncada S: The crucial role of physiological calcium concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol 1990; 101: 489-493.
White K, Marletta MA: Nitric oxide synthase is a cytochrome p-450 type hemoprotein. Biochemistry 1992; 31: 6627-6631.
Stuehr DJ, Kwon NS, Nvan C, Griffith O, Feldman P, Wiseman J: Nw-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 1991; 266: 6259-6266.
Sessa WC: The nitric oxide synthase family of proteins. J Vasc Res 1994; 31: 131-143.
Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, et al: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269: C1371-C1378.
Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL: lnduction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals an ís modulated by Pi 3 kinase. Biochem Biophys Res Commun 1999; 254: 231-242.
Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH: Chronic exercise increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expresion. Circ Res 1994; 74: 349-353.
Wang J, Wolin MS, Hintze TH: Enhanced flow-dependent endothelium-derived dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829-838.
Kaiser L, Spickard RC, Oliver NB: Hert failure depresses endothelium dependent responses in canine femoral artery. Am J Physiol 1989; 259: H962-H967.
Cooke JP, Rossitch E, Andon NA, Loscaalzo J, Dzau VJ: Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. Clin Invest 1991; 88: 1663-1671.
Ayajiki K, Hindermann M, Hecker M, Fleming I, Busse R: Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 1996; 78: 750-758.
Adams DJ, Barakeh J, Laskey R, Van Breemen C: Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 1989; 3: 2380-2400.
Himmel HM, Whorton AR, Strauss HC: Intracellular calccium, current, and stimulus-response couplin in endothelial cells. Hypertension Dallas 1993; 21: 112-127.
Lansman JB, Hallam TJ, Rink TJ: Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers? Nature Lond 1987; 325: 811-812.
Olsen SP, Bundgard M: Chloride-selective channels of large conductance in bovine aortic endothelial cells. Acta Physiol Scand 1992; 144: 191-198.
Olsen SP, Bundgard M: ATP-dependent closure and reactivation of inguard rectifier K+ channels in endothelial cells. Circ Res 1993; 73: 492-495.
Davies PF: How do vascular endothelial cells respond to flow? News Physiol Sci 1989; 4: 22-26.
Yang XC, Sachs F: Block of stretch-activated ion channels in xenopus oocytes by gadolinium and calcium ions. Science 1989; 243: 1068-1071.
Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, et al: Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 1997; 59: 527-549.
Suárez J, Rubio R: Regulation of glycolytic flux by coronary flow in Guinea pig heart. Role of vascular endothelial cell shear stress. Am J Physiol 1991; 261: H1994-H2000.
Rubio R, Ceballos G, Suárez J: Coronary flow stimulates auricular-ventricular transmission in the isolated perfused Guinea pig heart. Am J Physiol 1995; 269: H1177-H1185.
Suárez J, Torres C, Sánchez L, del Valle L, Pastelín G: Flow stimulates nitric oxide release in Guinea piq heart. Role of stretch-activated ion channels. Biochem Biophys Res Commun 1999; 261(1): 6-9.
Caldwell RA, Clemo HF, Baumgarten CM: Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 1998; 275: C619-C621.
Hansen DE, Borganelli M, Stacy GP, Taylor K: Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhydmic action. Circ Res 1991; 69: 820-831.
Gysemberg A, Margonari H, Loufoua J, Ovize A, Andre-Fouet X, Minaire Y, et al: Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabit heart. Am J Physiol 1998; 274: H955-H964.
Yamazaki T, Komoro I, Kudoh S, Zou Y, Nagai R, Aikawa R, et al: Role of ion channels and exchangers in mecanical stretch-induced cardiomyocyte hypertrophy. Cir Res 1998; 82: 430-437.