2000, Número 2
<< Anterior
Arch Cardiol Mex 2000; 70 (2)
Liberación de óxido nítrico inducida por el flujo sanguíneo. Novedades y perspectivas de investigación
Suárez MPJ
Idioma: Español
Referencias bibliográficas: 55
Paginas: 197-202
Archivo PDF: 153.04 Kb.
RESUMEN
El ambiente mecánico de las células de mamífero está definido por interacciones complejas entre fuerzas gravitacionales, fuerzas locales generadas por el aire, presión hidrostática y movimiento, así como la tensión intracelular derivada de la organización de los elementos del citoesqueleto. Con la excepción de la sangre, los componentes de tejidos de vertebrados desarrollan tensión por interacciones físicas con la matriz extracelular y células vecinas. La importancia fundamental de esto se refleja en la expresión dependiente de adhesión de la diferenciación celular normal, crecimiento y función. Las respuestas simples de organismos unicelulares a fuerzas externas han evolucionado en los mamíferos a sistemas sensoriales finos y sofisticados, así como respuestas adaptativas a cambios prolongados en el ambiente mecánico. En el sistema cardiovascular del mamífero, el endotelio presenta respuestas singulares a las fuerzas del flujo sanguíneo.
REFERENCIAS (EN ESTE ARTÍCULO)
Thoma R: Uber die intima der arterien. Virchovs Arch A 1921; 230: 1-45.
Schretzenmayr A: Uber kreislaufregulatorische vorgange an den grossen arterien bei der muskelarbeit. Pflugers Arch 1933; 232: 743-748.
Rodbard S: Negative feedback mechanisms in the architecture and function of the conective and cardiovascular tissues. Perspect Biol Med 1970; 13: 507.
Rodbard S: Vascular caliber. Cardiology 1975; 60: 4-49.
Furchgott RF, Zawadski JV: The obligatory role of the endothelial celis in the relaxation of arterial smooth muscle celis by acetylcholine. Nature Lond 1981; 288: 373-376.
Holtz J, Forstermann U, Pohl U, Giesler M, Bassenge E: Flow-dependent, endothelium-mediated dilatation of epicardial arteries in concious dogs: effects of Cyclo-oxygenase inhibition. J Cardiovasc Pharmacol 1984; 6: 1161-1169.
Kamiya A, Togawa T: Adaptative regulation of wall shear stress to flow change in the canine carotid artery. Am J Physiol 1980; 239: H14-H21.
Melkumyants AM, Balashov SA: Blood flow velocity: a constantly acting factor in dilatation of large arteries. Bull Exp Biol Med 1985; 99: 135-138.
Melkumyants AM, Balashov SA, Khayutin VM: Endothelium dependent control of arterial diameter by blood viscosity. Cardiovasc Res 1989; 23: 23741-747.
Miller VM, Vanhoutte PM: Enhanced release of endothelium-derived relaxing factor by chronic increases in blood flow. Am J Physiol 1988; 255: H446-H451.
Pohl U, Holts J, Busse R, Bassenge E: Crucial role of endothelium in the vasodilator response to increased flow in vivo. Hypertension Dallas 1986; 8: 37-47.
Rubanyi GM, Ramiro JC, Vanhoutte PM: Flow-induced release of endothelium-derived relaxing factor. Am J Physiol 1986; 250: H1145-H1149.
Rubanyi GM, Freay AD, Kauser K, Johns A, Harder DR: Mechanoreception by the endothelium: mediators and mechanisms of pressure-and flow induced vascular responses. Blood Vessels 1990; 27: 246-257.
Smiesko V, Kozik J, Dolezel S: Role of the endothelium in the control of the arterial diameter by blood flow. Blood Vessels 1985; 22: 247-251.
Johnson PC: The myogenic response. In: Handbook of Physiology. The cardiovascular System. Vascular Smooth Muscle. Bethesda, MD: Am. Physiol. Soc., sect 2, vol. II, chapt. 15, 1981; 409-442.
Rubanyi GM: Endothelium-dependent pressure-induced contraction of isolated canine carotid arteries. Am J Physiol 1988; 255: H783-H788.
Koller A, Sunand D, Kaley G: Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro. Circ Res 1993; 72: 1276-1284.
Moncada S, Palmer RM, Highs EA: Nitric oxide: Physiology, pathophysiology and pharmacology of nitric oxide. Pharmacol Rev 1991; 43: 109-142.
Palmer RM, Ashton DS, Moncada S: Vascular Endothelial cells synthesize nitric oxide from L-arginine. Nature Lond 1988; 333: 664-666.
Palmer RM, Ferrige AG, Moncada S: Nitric oxide release accounts for the biological activyty of endothelium-derived relaxin factor. Nature Lond 1987; 327: 524-526.
Ignarro LJ: Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30: 535-560.
Rogers NE, Ignarro LJ: Constitutive nitric oxide synthase from cerebelum is reversibly inhibited by nitric oxide formed from L-arginine. Biochem Biophys Res Commun 1992; 189: 242-249.
Rubanyi GM, Vanhoutte PM: Superoxide anions and hyperoxia inactivate endothelium derived relaxing factor. Am J Physiol 1986; 250: H822-H827.
Arnold WP, Mittal CK, Katsuki S, Murad F: Nitric oxide activates guanilate cyclase and increases guanosine 3',5'-cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 1977; 74: 3203-3207.
Murad F: Cyclic guanosines monophosphate as a mediator of vasodilation. J Clin lnvest 1986; 78: 1-5.
Stamiler J, Mendelsohn ME, Amarante P, Smick D, Andon N, Davies PF, et al: N-acetylcysteine potentiates platelet inhibition by endothelium-derived relaxing factor. Circ Res 1989; 65: 789-795.
Macmillan-Crow LA, Murphy-Ullrich JE, Lincoln TM: Identification and possible localization of cGMP-dependent protein kinase in bovine aortic endothelial cells. Biochem Biphys Res Commun 1994; 201: 531-537.
Marsden PA, Heng HH, Scherer SW, Stewart RJ, Hall AV, Shi XM, et al: Structure and chromosomal localization of the human constitutive endothelial nitric oxide synthase. J Biol Chem 1993; 268: 17478-17488.
Forsterman U, Pollock JS, Schmidt HH, Heller M, Murad F: Calmodulin-dependent endothelium-derived relaxing factor synthase activity is present in the particulate and cytosolic fractions of bovine aortic endothelial cells. Proc Natl Acad Sci USA 1991; 88: 1788-1792.
López-Jaramillo P, González MP, Palmer RM, Moncada S: The crucial role of physiological calcium concentrations in the production of endothelial nitric oxide and the control of vascular tone. Br J Pharmacol 1990; 101: 489-493.
White K, Marletta MA: Nitric oxide synthase is a cytochrome p-450 type hemoprotein. Biochemistry 1992; 31: 6627-6631.
Stuehr DJ, Kwon NS, Nvan C, Griffith O, Feldman P, Wiseman J: Nw-hydroxy-L-arginine is an intermediate in the biosynthesis of nitric oxide from L-arginine. J Biol Chem 1991; 266: 6259-6266.
Sessa WC: The nitric oxide synthase family of proteins. J Vasc Res 1994; 31: 131-143.
Uematsu M, Ohara Y, Navas JP, Nishida K, Murphy TJ, Alexander RW, et al: Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 1995; 269: C1371-C1378.
Malek AM, Jiang L, Lee I, Sessa WC, Izumo S, Alper SL: lnduction of nitric oxide synthase mRNA by shear stress requires intracellular calcium and G-protein signals an ís modulated by Pi 3 kinase. Biochem Biophys Res Commun 1999; 254: 231-242.
Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH: Chronic exercise increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expresion. Circ Res 1994; 74: 349-353.
Wang J, Wolin MS, Hintze TH: Enhanced flow-dependent endothelium-derived dilation of epicardial coronary artery in conscious dogs. Circ Res 1993; 73: 829-838.
Kaiser L, Spickard RC, Oliver NB: Hert failure depresses endothelium dependent responses in canine femoral artery. Am J Physiol 1989; 259: H962-H967.
Cooke JP, Rossitch E, Andon NA, Loscaalzo J, Dzau VJ: Flow activates an endothelial potassium channel to release an endogenous nitrovasodilator. Clin Invest 1991; 88: 1663-1671.
Ayajiki K, Hindermann M, Hecker M, Fleming I, Busse R: Intracellular pH and tyrosine phosphorylation but not calcium determine shear stress-induced nitric oxide production in native endothelial cells. Circ Res 1996; 78: 750-758.
Adams DJ, Barakeh J, Laskey R, Van Breemen C: Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 1989; 3: 2380-2400.
Himmel HM, Whorton AR, Strauss HC: Intracellular calccium, current, and stimulus-response couplin in endothelial cells. Hypertension Dallas 1993; 21: 112-127.
Lansman JB, Hallam TJ, Rink TJ: Single stretch-activated ion channels in vascular endothelial cells as mechano-transducers? Nature Lond 1987; 325: 811-812.
Olsen SP, Bundgard M: Chloride-selective channels of large conductance in bovine aortic endothelial cells. Acta Physiol Scand 1992; 144: 191-198.
Olsen SP, Bundgard M: ATP-dependent closure and reactivation of inguard rectifier K+ channels in endothelial cells. Circ Res 1993; 73: 492-495.
Davies PF: How do vascular endothelial cells respond to flow? News Physiol Sci 1989; 4: 22-26.
Yang XC, Sachs F: Block of stretch-activated ion channels in xenopus oocytes by gadolinium and calcium ions. Science 1989; 243: 1068-1071.
Davies PF, Barbee KA, Volin MV, Robotewskyj A, Chen J, Joseph L, et al: Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annu Rev Physiol 1997; 59: 527-549.
Suárez J, Rubio R: Regulation of glycolytic flux by coronary flow in Guinea pig heart. Role of vascular endothelial cell shear stress. Am J Physiol 1991; 261: H1994-H2000.
Rubio R, Ceballos G, Suárez J: Coronary flow stimulates auricular-ventricular transmission in the isolated perfused Guinea pig heart. Am J Physiol 1995; 269: H1177-H1185.
Suárez J, Torres C, Sánchez L, del Valle L, Pastelín G: Flow stimulates nitric oxide release in Guinea piq heart. Role of stretch-activated ion channels. Biochem Biophys Res Commun 1999; 261(1): 6-9.
Caldwell RA, Clemo HF, Baumgarten CM: Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 1998; 275: C619-C621.
Hansen DE, Borganelli M, Stacy GP, Taylor K: Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhydmic action. Circ Res 1991; 69: 820-831.
Gysemberg A, Margonari H, Loufoua J, Ovize A, Andre-Fouet X, Minaire Y, et al: Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabit heart. Am J Physiol 1998; 274: H955-H964.
Yamazaki T, Komoro I, Kudoh S, Zou Y, Nagai R, Aikawa R, et al: Role of ion channels and exchangers in mecanical stretch-induced cardiomyocyte hypertrophy. Cir Res 1998; 82: 430-437.